1. **Summary and Comment**: The Chinese Academy of Sciences (CAS) has recently established what is reportedly China’s first Biosafety Level 4 (BSL-4) laboratory in Wuhan. This state-of-the-art facility is designed for prevention and control research on diseases that require the highest level of biosafety and biosecurity containment. Ultimately, scientists hope the lab will contribute to the development of new antiviral drugs and vaccines, but its current productivity is limited by a shortage of the highly trained technicians and investigators required to safely operate a BSL-4 laboratory and a lack of clarity in related Chinese government policies and guidelines. China must invest in the development of the technical and scientific expertise needed to safely and efficiently operate this facility if it wishes to become a fully-engaged and collaborative global partner in infectious disease research and control. In addition, government BSL research decision-making processes need to be more transparent so that international partners and Chinese scientists are confident that the government is providing informed oversight that meets the highest global standards. To achieve full operation of this facility, China is likely to need additional technical assistance and advice from the international community. **End Summary and Comment.**

China Investing in Infectious Disease Control

2. (U) Between November 2002 and July 2003, China faced an outbreak of Severe Acute Respiratory Syndrome (SARS), which, according to the World Health Organization, resulting in
8,098 cases and leading to 774 deaths reported in 37 countries. A majority of cases occurred in China, where the fatality rate was 9.6%. This incident convinced China to prioritize international cooperation for infectious disease control. An aspect of this prioritization was China’s work with the Jean Merieux BSL-4 Laboratory in Lyon, France, to build China’s first high containment laboratory at Wuhan’s Institute of Virology (WIV), an institute under the auspices of the Chinese Academy of Sciences (CAS). Construction took 11 years and $44 million USD, and construction on the facility was completed on January 31, 2015. Following two years of effort, which is not unusual for such facilities, the WIV lab was accredited in February 2017 by the China National Accreditation Service for Conformity Assessment. It occupies four floors and consists of over 32,000 square feet. WIV leadership now considers the lab operational and ready for research on class-four pathogens (P4), among which are the most virulent viruses that pose a high risk of aerosolized person-to-person transmission.

Unclear Guidelines on Virus Access and a Lack of Trained Talent Impede Research

3. **(SBU)** In addition to accreditation, the lab must also receive permission from the National Health and Family Planning Commission (NHFPC) to initiate research on specific highly contagious pathogens. According to some WIV scientists, it is unclear how NHFPC determines what viruses can or cannot be studied in the new laboratory. To date, WIV has obtained permission for research on three viruses: Ebola virus, Nipah virus, and Xinjiang hemorrhagic fever virus (a strain of Crimean Congo hemorrhagic fever found in China’s Xinjiang Province). Despite this permission, however, the Chinese government has not allowed the WIV to import Ebola viruses for study in the BSL-4 lab. Therefore, WIV scientists are frustrated and have pointed out that they won’t be able to conduct research project with Ebola viruses at the new BSL-4 lab despite of the permission.

4. **(SBU)** Professor Zhengli Shi, one of the few Chinese scientists with BSL-4 lab training, commented that NHFPC’s decision-making process regarding virus research permission is not transparent. Dr. Shi primarily studies coronaviruses including SARS and Middle East Respiratory Syndrome (MERS). As a result, WIV requested permission to work on SARS in the new lab. NHFPC denied this request without providing a clear reason, according to Professor Zheng. Thus, while the BSL-4 lab is ostensibly fully accredited, its utilization is limited by lack of access to specific organisms and by opaque government review and approval processes. As long as this situation continues, Beijing’s commitment to prioritizing infectious disease control - on the regional and international level, especially in relation to highly pathogenic viruses, remains in doubt.

5. **(SBU)** During interactions with scientists at the WIV laboratory, they noted that the new lab has a serious shortage of appropriately trained technicians and investigators needed to safely operate this high-containment laboratory. University of Texas Medical Branch in Galveston (UTMB), which has one of several well-established BSL-4 labs in the United States (supported by the National Institute of Allergy and Infectious Diseases (NIAID of NIH), has scientific collaborations with WIV, which may help alleviate this talent gap over time. Reportedly, researchers from UTMB are helping train technicians who work in the WIV BSL-4 lab. Despite this, technicians at the WIV lab stated that they would welcome more help from U.S. and international organizations as they establish “gold standard” operating procedures and training.
courses for the first time in China. As China is building more BSL-4 labs, including one in Harbin Veterinary Research Institute subordinated to the Chinese Academy of Agricultural Sciences (CAAS) for veterinary research use (according to WIV scientists), the training for technicians and investigators working on dangerous pathogens will certainly be in demand.

Despite Limitations, WIV Researchers Produce SARS Discoveries

6. **(SBU)** The ability of WIV scientists to undertake productive research despite limitations on the use of the new BSL-4 facility is demonstrated by a recent publication on the origins of SARS. Over a five-year study, Drs. Shi and Cui Jie (and their research team) widely sampled bats in Yunnan province with funding support from NIAID/NIH, USAID, and several Chinese funding agencies. The study results were published in PLoS Pathogens online on Nov. 30, 2017 (1), and it demonstrated that a SARS-like coronaviruses isolated from horseshoe bats in a single cave contain all the building blocks of the pandemic SARS-coronavirus genome that caused the human outbreak. These results strongly suggest that the highly pathogenic SARS-coronavirus originated in this bat population. Most importantly, the researchers also showed that various SARS-like coronaviruses can interact with ACE2, the human receptor identified for SARS-coronavirus. This finding strongly suggests that SARS-like coronaviruses from bats can be transmitted to humans to cause SARS-like disease. From a public health perspective, this makes the continued surveillance of SARS-like coronaviruses in bats and study of the animal-human interface critical to future emerging coronavirus outbreak prediction and prevention. It is interesting that WIV scientists are allowed to study the SARS-like coronaviruses isolated from bats while they are precluded from studying human-disease causing SARS coronavirus in their new BSL-4 lab until permission for such work is granted by the NHFCP.
