harlan™

Glyphosate

Glyphosate Technical - Salmonella Typhimurium and Escherichia Coli Reverse Mutation Assay

Final Report

DATA REQUIREMENT(S): OECD 471 (1997)

EPA OPPTS 870 5100 (1998) EC 440/2008 B.13/B.14 (2008)

AUTHOR(S): Dipt Biol

STUDY COMPLETION DATE: 18 December 2009

PERFORMING LABORATORY: Harlan

Cytotest Cell Research GmbH (Harlan CCR)

In den Leppsteinswiesen 19 64380 Rossdorf, Germany

LABORATORY PROJECT ID:

Report Number: 1264500 Study Number: 1264500 Task Number: T007689-08

PONSOR(S): Syngenta Ltd

Jealott's Hill International Research Centre

Bracknell, Berkshire RG42 6EY, United Kingdom

STATEMENTS OF DATA CONFIDENTIALITY CLAIMS

GOOD LABORATORY PRACTICE COMPLIANCE STATEMENT

This study performed in the test facility of Harlan CCR, In den Leppsteinswiesen 19, 64380 Rossdorf, Germany was conducted in compliance with Good Laboratory Practice Regulations:

"Chemikaliengesetz" (Chemicals Act) of the Federal Republic of Germany, "Anhang 1" sen 19
Jemany

Jemany

Dipl. Biol.
Study Director

De' (Annex 1) dated July 25, 1994 ("BGBl. I 1994", pp. 1703), last revision dated June 27, 2002.

"OECD Principles of Good Laboratory Practice", as revised in 1997 [C(97)186/Final]

There were no circumstances that may have affected the quality or integrity of the study.

Date: 18 December 2009

The particular of the particul

QUALITY ASSURANCE STATEMENT

Study Number:

1264500

Test Item:

Glyphosate technical

Study Director:

Dipl. Biol.

Title:

Glyphosate Technical - Salmonella Typhimurium and

Escherichia Coli Reverse Mutation Assay

The general facilities and activities of Harlan CCR are inspected periodically and the results are reported to the responsible person and the management.

Study procedures were inspected periodically. The study plan and this report were audited by the Quality Assurance Unit. The dates are given below.

Phases and Dates of QA	. (1), (1), (1), (1), (1), (1), (1), (1),	Dates of Reports to the Study Director and to Management
Study Plan:	May 05, 2009	May 05, 2009
Process Inspection	to se mo gloriti suo	
Preparation for	18 M.	
Application,	St 24 citor surviolity	
Application:	October 14, 2009	October 14, 2009
Draft Report:	May 05, 2009 October 14, 2009 December 02, 2009	December 02, 2009
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	irm that the present final repare Unit	ort reflects the raw data. December 2009

GENERAL INFORMATION

Contributors

The following contributed to this report in the capacities indicated:

Name Title

Dipl. Biol. Study Director

Dr. Deputy Study Director

Dr. Management

Head of Quality Assurance Unit

Syngenta Study Manager

Test Facility: Harlan

Cytotest Cell Research GmbH (Harlan CCR)

In den Leppsteinswiesen 19

64380 Rossdorf

Germany

Contracting Institute: Harlan Laboratories Ltd.

4452 Itingen Switzerland

Reference Number: C45331

Study dates

Study initiation date: 15 September 2009 Experimental start date: 23 September 2009 Experimental termination date: 13 October 2009

Deviations from the guidelines

None

Retention of samples

Raw data and a sample of the test item.

Performing laboratory test item reference number

S 10083 22

Raw data, study plan, original final report, and a sample of the test item.

No data will be discarded without the Sponsor's consent.

Good laboratory practice

The study was performed in compliant.

"Chemikaliengesetz" (Chemicals Act) of the Federal Republic of Germany, "Anhang 1" (Annex 1) dated July 25, 1994 ("BGBl. I 1994", pp. 1703), last revision dated June 27, 2002

"OECD Principles of Good Laboratory Practice", as revised in 1997 [C(97)186/Final]

rector of the file of the file

TABLE OF CONTENTS

		No.	
	STATEMENTS	S OF DATA CONFIDENTIALITY CLAIMS	2
	GOOD LABOR	RATORY PRACTICE COMPLIANCE STATEMENT	3
	FLAGGING ST	TATEMENT COLUMN TO THE PARTY OF	4
	QUALITY ASS	SURANCE STATEMENT	5
	GENERAL INI	FORMATION	6
	TABLE OF CO	ONTENTS WE WITH A PROPERTY OF THE PROPERTY OF	9
	1.0	EXECUTIVE SUMMARY	11
	1.1	Study design	11
	1.2	Results	11
	1.3	Conclusion	11
	2.0	RATORY PRACTICE COMPLIANCE STATEMENT SURANCE STATEMENT FORMATION ONTENTS EXECUTIVE SUMMARY Study design Results Conclusion	12
	2.1	Purpose	12
	2.2	Regulatory guidelines	12
	3.0	MATERIALS AND METHODS	13
	3.1	Test itemControls	13
	3.2	Controls	14
	3.2.1	Negative controls	14
	3.2.2	Positive control substances	14
	3.3 [S S S S S S S S S S S S S S S S S S	Experimental design	15
This document is not the doc	3.301	Characterisation of the Salmonella typhimurium and E. coli strains Storage	15
	3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.4	Storage	16
Pio	3.3.3	Precultures	16
"ihe of	3.3.4	Selective agar	16
is not no	3,3.3 Hi	Overlay agar	16
ent la viene	3.4	Mammalian microsomal fraction S9 Mix	16
citue die	3.4.1	S9 (Preparation by Harlan CCR)	17
300	3.4.2	S9 Mix	17
This	3.5	Pre-Experiment for Toxicity	17
	3.6	Dose Selection	18
	3.7	Experimental performance	18
	3.8	Data evaluation	19
	3.8.1	Data recording	19

3.8.2	Acceptability of the assay	19
3.8.3	Evaluation of results	19
3.8.4	Biometry	19
4.0	RESULTS AND DISCUSSION	20
4.1	Dose selection	20
4.2	Discussion	20
5.0	CONCLUSION	21
6.0	REFERENCES	22
TABLES SECT	ION Sic of the circle of the c	23
TABLE 1	Summary of Results Experiment I	24
TABLE 2	Summary of Results Experiment II	25
TABLE 3	Pre-Experiment and Experiment I:1264500 VV Plate Incorporation	26
TABLE 4	Pre-Experiment and Experiment 1:1264500 VV Plate Incorporation	29
TABLE 5	Experiment II:1264500 HV2 Pre-Incubation	32
TABLE 6	Experiment II:1264500 HV2 Pre-Incubation	34
APPENDICES	SECTION	36
APPENDIX 1	Historical Control Data	37
APPENDIX 2	Copy of GLP Certificate	38
APPENDIX 3	Certificate of Analysis	39
Many Of the State	document of the following the state of the s	
	3.8.3 3.8.4 4.0 4.1 4.2 5.0 6.0 TABLES SECT TABLE 1 TABLE 2 TABLE 3 TABLE 4 TABLE 5 TABLE 6 APPENDICES S	3.8.3 Evaluation of results 3.8.4 Biometry

1.0 **EXECUTIVE SUMMARY**

1.1 Study design

This study was performed to investigate the potential of Glyphosate technical (via the Nantong Jiangshan (glycine-route)) to induce gene mutations in the plate incorporation test (experiment I) and the pre-incubation test (experiment II) using the Salmonella typhimurium strains TA 1535, TA 1537, TA 98, and TA 100, and the Escherichia coli strains WP2 uvrA pKM 101 and WP2 pKM 101.

1.2 Results

The plates incubated with the test item showed normal background growth up to 5000 µg/plate with and without metabolic activation in both independent experiments.

No toxic effects, evident as a reduction in the number of revertants (below the indication factor of 0.5), occurred in the test groups with and without metabolic activation.

No substantial increase in revertant colony numbers of any of the six tester strains was observed following treatment with Glyphosate technical at any dose level, neither in the presence nor absence of metabolic activation (S9 mix). There was also no tendency of higher mutation rates with increasing concentrations in the range below the generally acknowledged border of biological relevance. Positive control chemicals showed appropriate responses in the relevant strains.

Conclusion 1.3

Therefore, Glyphosate technical is considered to be non-m typhimurium and Escherichia coli reverse mutation assay. In conclusion, it can be stated that during the described mutagenicity test and under the experimental conditions reported, the test item did not induce gene mutations by base pair

Therefore, Glyphosate technical is considered to be non-mutagenic in this Salmonella

2.0 INTRODUCTION

2.1 Purpose

The experiments were performed to assess the potential of the test item Glyphosate technical to induce gene mutations by means of two independent Salmonella typhimurium and Escherichia coli reverse mutation assays. Experiment I was performed as a plate incorporation assay and experiment II was performed as a pre-incubation assay.

The most widely used assays for detecting gene mutations are those using bacteria (1). They are relatively simple and rapid to perform, and give reliable data on the ability of an agent to interact with DNA and produce mutations.

Reverse mutation assays determine the frequency with which an agent reverses or suppresses the effect of the forward mutation. The genetic target presented to an agent is therefore small, specific and selective. Several bacterial strains, or a single strain with multiple markers are necessary to assure reliable detection of mutagens that may be specific to one tester strain or locus. The reversion of bacteria from growth-dependence on a particular amino acid to growth in the absence of that amino acid (reversion from auxotrophy to prototrophy) is the most widely used marker.

The S. typhimurium histidine (his) and the E. coli tryptophan (trp) reversion system measures his → his and trp → trp reversions, respectively. The S. typhimurium and Escherichia coli strains are constructed to differentiate between base pair (TA 1535, TA 100, WP2 uvrA pKM 101, and WP2 pKM 101 and frameshift (TA 1537, TA 98) mutations.

According to the direct plate incorporation or the pre-incubation method the bacteria are exposed to the test item with and without metabolic activation and plated on selective medium. After a suitable period of incubation, revertant colonies are counted.

To establish a dose response effect at least six dose levels with adequately spaced intervals were tested. The maximum dose level was 5000 $\mu g/plate$.

To validate the test, reference mutagens were tested in parallel to the test item.

2.2 Regulatory guidelines

This study followed the procedures indicated by the following internationally accepted guidelines and recommendations:

"Ninth Addendum to OECD Guidelines for Testing of Chemicals", Section 4, No. 471: "Bacterial Reverse Mutation Test", adopted July 21, 1997

"United States Environmental Protection Agency, Health Effects Test Guideline OPPTS 870.5100 (1998). Bacterial Reverse Mutation Test."

"Commission Regulation (EC) No. 440/2008 B13/14", dated May 30, 2008

3.0 MATERIALS AND METHODS

3.1 Test item

Internal Test Item Number: S10083 22

The test item and the information concerning the test item were provided by the sponsor.

Identity: Glyphosate technical

Batch No.: 569753

Purity: 96.3 % of Glyphosate Acid

Stability in Solvent: Not indicated by the sponsor

Storage: Room temperature

Reanalysis Date: August 31, 2010

Source of Material: Nantong Jiangshan (glycine-route)

On the day of the experiment, the test item Glyphosate technical was dissolved in deionised water. The solvent was chosen because of its solubility properties and its relative non-toxicity to the bacteria (2).

3.2 **Controls**

3.2.1 Negative controls

Concurrent untreated and solvent controls were performed.

3.2.2 Positive control substances

Without metabolic activation

Strains: Name:

Adda Johe dion John John Supplier:

sodium azide, NaN₃
SERVA, D-69042 Heidelberg
30175
at least 99 %
vater deionised
0 µg/plate Catalogue No.: **Purity:** Dissolved in: Concentration:

TA 1537, TA 98 Strains:

4-nitro-o-phenylene-diamine, 4-NOPD Name:

Supplier: SIGMA, D-82041 Deisenhofen

Catalogue No.: N 9504 >99.9 % Purity:

DMSO (MERCK, D-64293 Darmstadt; purity > 99 %) Dissolved in:

10 μg/plate in TA 98, 50 μg/plate in TA 1537 Concentration:

WP2 uvrA pKM 101, WP2 pKM 101 Strains: Name: methyl methane sulfonate, MMS

Supplier: Merck-Schuchardt, D-85662 Hohenbrunn

Catalogue No.: 820775 ussolved in: Concentration: > 99.0 % water deionised 3 μL/plate

With metabolic activation

TA 1535, TA 1537, TA 98, TA 100, WP2 uvrA pKM 101, WP2 Strains:

pKM 101

Name: 2-aminoanthracene, 2-AA Supplier: SIGMA, D-82041 Deisenhofen

Catalogue No.: A 1381 97.5 % **Purity:**

Dissolved in: DMSO (MERCK, D-64293 Darmstadt, purity > 99 %) Concentration: 2.5 µg/plate (TA 1535, TA 1537, TA 98, TA 100),

10 μg/plate (WP2 uvrA pKM 101, WP2 pKM 101))

The stability of the positive control substances in solution is unknown but a mutagenic response in the expected range will be sufficient evidence of biological stability.

3.3 Experimental design

3.3.1 Characterisation of the Salmonella typhimurium and E. coli strains

The histidine dependent strains are derived from S. typhimurium strain LT2 through mutations in the histidine locus. Additionally due to the "deep rough" (rfa') mutation they possess a faulty lipopolysaccharide envelope which enables substances to penetrate the cell wall more easily. A further mutation causes a reduction in the activity of an excision repair system. The latter alteration includes mutational processes in the nitrate reductase and biotin genes produced in a UV-sensitive area of the gene named uvrB. In the strains TA 98 and TA 100 the R-factor plasmid pKM 101 carries the ampicillin resistance marker (3).

Strain WP2 (4) and its derivatives all carry the same defect in one of the genes for tryptophan biosynthesis. Tryptophan-independent (Trp⁺) mutants (revertants) can arise either by a base change at the site of the original alteration or by a base change elsewhere in the chromosome so that the original defect is suppressed. This second possibility can occur in several different ways so that the system seems capable of detecting all types of mutagen which substitute one base for another. Additionally, the uvrA derivative is deficient in the DNA repair process (excisable repair damage). Such a repair-deficient strain may be more readily mutated by agents. The E. coli strains WP2 uvrA pKM101 and WP2 pKM101 are constructed by introduction of the R-factor plasmid pKM101.

When summarised, the mutations of the TA and E. coli strains used in this study can be described as follows:

200 11/10	Salmonella typhimur	ium
Strains	Genotype	Type of mutations indicated
TA 1537	his C 3076; rfa ⁻ ; uvrB ⁻	frame shift mutations
TA 98	his D 3052; rfa; uvrB; R-factor	" "
TA 1535	his G 46; rfa ⁻ ; uvrB ⁻	base-pair substitutions
TA 100	his G 46; rfa ⁻ ; uvrB ⁻ ; R-factor	" "
Lo, "Hill "Co Hill "IL	Escherichia coli	
WP2 uvrA pKM101	trp E 56 uvrA; R-factor	base-pair substitutions and others
WP2 pKM101	trp E 56; R-factor	" "

Regular checking of the properties of the Salmonella typhimurium and E. coli strains regarding the membrane permeability and ampicillin resistance as well as normal spontaneous mutation rates is performed by Harlan CCR according to B. Ames et al. (5) and D. Maron and B. Ames (3). In this way it is ensured that the experimental conditions set down by Ames are fulfilled.

The bacterial strains TA 1535, TA 1537, TA 98, TA 100, WP2 uvrA pKM 101, and WP2 pKM 101 were obtained from Trinova Biochem GmbH (35394 Gießen, Germany).

3.3.2 Storage

The strain cultures were stored as stock cultures in ampoules with nutrient broth + 5 % DMSO (MERCK, D-64293 Darmstadt) in liquid nitrogen.

3.3.3 Precultures

From the thawed ampoules of the strains 0.5 mL bacterial suspension was transferred into 250 mL Erlenmeyer flasks containing 20 mL nutrient medium. A solution of 20 μ L ampicillin (25 μ g/mL) was added to the strains TA 98, TA 100, WP2 uvrA pKM 101, and WP2 pKM 101. This nutrient medium contains per litre:

```
8 g Merck Nutrient Broth (MERCK, D-64293 Darmstadt)
```

The bacterial cultures were incubated in a shaking water bath for 4 hours at 37 $^{\circ}$ C. The optical density of the bacteria was determined by absorption measurement and the obtained values indicated that the bacteria were harvested at the late exponential or early stationary phase (10^8 - 10^9 cells/mL).

3.3.4 Selective agar

The plates with the selective agar were obtained from E. Merck, D-64293 Darmstadt.

3.3.5 Overlay agar

The overlay agar contains per litre:

for Salmonella strains:	for Escherichia coli:
6.0 g Agar Agar*	6.0 g Agar Agar*
6.0 g NaCl*	6.0 g NaCl*
10.5 mg L-Histidine HCl H ₂ O*	2.5 mg Tryptophan*
12.2 mg Biotin*	

^{* (}MERCK, D-64293 Darmstadt)

Sterilisations were performed at 121 °C in an autoclave.

3.4 Mammalian microsomal fraction S9 Mix

The bacteria used in this assay do not possess the enzyme systems which, in mammals, are known to convert promutagens into active DNA damaging metabolites. In order to overcome this major drawback an exogenous metabolic system is added in form of mammalian microsome enzyme activation mixture.

⁵ g NaCl (MERCK, D-64293 Darmstadt)

3.4.1 S9 (Preparation by Harlan CCR)

Phenobarbital/β-Naphthoflavone induced rat liver S9 is used as the metabolic activation system. The S9 is prepared from 8 - 12 weeks old male Wistar rats (Hsd Cpb: WU, Harlan Laboratories GmbH, 33178 Borchen, Germany), weight approx. 220 - 320 g induced by applications of 80 mg/kg b.w. Phenobarbital i.p. (Desitin; D-22335 Hamburg) and β-Naphthoflavone p.o. (Aldrich, D-89555 Steinheim) each on three consecutive days. The livers are prepared 24 hours after the last treatment. The S9 fractions are produced by dilution of the liver homogenate with a KCl solution (1+3) followed by centrifugation at 9000 g. Aliquots of the supernatant are frozen and stored in ampoules at -80 °C. Small numbers of the ampoules can be kept at -20 °C for up to one week. The protein concentration in the S9 preparation is usually between 20 and 45 mg/mL. Each batch of S9 mix is routinely tested with 2-aminoanthracene as well as benzo(a)pyrene.

The protein concentration in the S9 preparation was 31.6 mg/mL (lot no. R 130309) in both experiments.

3.4.2 S9 Mix

Before the experiment an appropriate quantity of S9 supernatant was thawed and mixed with S9 cofactor solution. The amount of S9 supernatant was 10% v/v in the S9 mix. Cofactors are added to the S9 mix to reach the following concentrations in the S9 mix:

8 mM MgCl₂ 33 mM KCl 5 mM Glucose-6-phosphate 4 mM NADP

in 100 mM sodium-ortho-phosphate-buffer, pH 7.4.

During the experiment the S9 mix was stored in an ice bath. The S9 mix preparation was performed according to Ames et al.(5).

3.5 Pre-Experiment for Toxicity

To evaluate the toxicity of the test item a pre-experiment was performed with all strains. Eight concentrations were tested for toxicity and mutation induction with three plates each. The experimental conditions in this pre-experiment were the same as described below for the experiment I (plate incorporation test).

Toxicity of the test item results in a reduction in the number of spontaneous revertants or a clearing of the bacterial background lawn.

The pre-experiment is reported as main experiment I, if the following criteria are met:

A minimum of five analysable dose levels should be present with at least four dose levels showing no signs of toxic effects, evident as a reduction in the number of revertants below the indication factor of 0.5.

The above criteria should be met for all valid experiments.

3.6 Dose Selection

In the pre-experiment the concentration range of the test item was $3-5000~\mu g/plate$. The pre-experiment is reported as experiment I. Since no toxic effects were observed , six concentrations were tested and $5000~\mu g/plate$ was chosen as maximal concentration in experiment II.

The concentration range included two logarithmic decades. The following concentrations were tested in experiment II:

33; 100; 333; 1000; 2500; and 5000 µg/plate

3.7 Experimental performance

For each strain and dose level including the controls, three plates were used.

The following materials were mixed in a test tube and poured onto the selective agar plates:

- 100 μL Test solution at each dose level, solvent (negative control) or reference mutagen solution (positive control).
- 500 μL S9 mix (for test with metabolic activation) or S9 mix substitution buffer* (for test without metabolic activation),
- 100 μL Bacteria suspension (cf. test system, pre-culture of the strains),
- 2000 μL Overlay agar

In the pre-incubation assay 100 μL test solution solvent or positive control, 500 μL S9 mix / S9 mix substitution buffer* and 100 μL bacterial suspension were mixed in a test tube and shaken at 37° C for 60 minutes. After pre-incubation 2.0 mL overlay agar (45° C) was added to each tube. The mixture was poured on selective agar plates.

After solidification the plates were incubated upside down for at least 48 hours at 37°C in the dark (6).

* Substitution buffer: 8.5 parts of the 100 mM sodium-ortho-phosphate-buffer pH 7.4 with 1.5 parts of KCl solution 0.15 M

3.8 Data evaluation

3.8.1 Data recording

The colonies were counted using the Petri Viewer Mk2 (Perceptive Instruments Ltd, Suffolk CB9 7BN, UK) with the software program Ames Study Manager. The counter was connected to an IBM AT compatible PC with printer to print out the individual values and the means from the plates for each concentration together with standard deviations and enhancement factors as compared to the spontaneous reversion rates (see tables of results).

3.8.2 Acceptability of the assay

The Salmonella typhimurium and Escherichia coli reverse mutation assay is considered acceptable if it meets the following criteria:

- regular background growth in the negative and solvent control
- the spontaneous reversion rates in the negative and solvent control are in the range of our historical data
- the positive control substances should produce a significant increase in mutant colony frequencies

3.8.3 Evaluation of results

A test item is considered as a mutagen if a biologically relevant increase in the number of revertants exceeding the threshold of twice the colony count of the corresponding solvent control is observed (1).

A dose dependent increase is considered biologically relevant if the threshold is exceeded at more than one concentration (6).

An increase exceeding the threshold at only one concentration is judged as biologically relevant if reproduced in an independent second experiment.

A dose dependent increase in the number of revertant colonies below the threshold is regarded as an indication of a mutagenic potential if reproduced in an independent second experiment. However, whenever the colony counts remain within the historical range of negative and solvent controls such an increase is not considered biologically relevant.

3.8.4 Biometry

According to the OECD guideline 471, a statistical analysis of the data is not mandatory.

4.0 RESULTS AND DISCUSSION

4.1 Dose selection

In the pre-experiment the concentration range of the test item was $3-5000~\mu g/plate$. The pre-experiment is reported as experiment I. Since no toxic effects were observed , six concentrations were tested and 5000 $\mu g/plate$ was chosen as maximal concentration in experiment II.

The concentration range included two logarithmic decades. The following concentrations were tested in experiment II:

33; 100; 333; 1000; 2500; and 5000 µg/plate

4.2 Discussion

The test item Glyphosate technical was assessed for its potential to induce gene mutations in the plate incorporation test (experiment I) and the pre-incubation test (experiment II) using Salmonella typhimurium strains TA 1535, TA 1537, TA 98, and TA 100, and the Escherichia coli strains WP2 uvrA pKM 101 and WP2 pKM 101.

The assay was performed with and without liver microsomal activation. Each concentration, including the controls, was tested in triplicate. The test item was tested at the following concentrations:

Pre-Experiment /Experiment I: 3; 10; 33; 100; 333; 1000; 2500; and 5000 μ g/plate Experiment II: 33; 100; 333; 1000; 2500; and 5000 μ g/plate

The plates incubated with the test item showed normal background growth up to $5000 \mu g/p$ late with and without metabolic activation in both independent experiments.

No toxic effects, evident as a reduction in the number of revertants (below the indication factor of 0.5), occurred in the test groups with and without metabolic activation.

No precipitation of the test item occurred up to the highest investigated dose.

No substantial increase in revertant colony numbers of any of the six tester strains was observed following treatment with Glyphosate technical at any dose level, neither in the presence nor absence of metabolic activation (S9 mix). There was also no tendency of higher mutation rates with increasing concentrations in the range below the generally acknowledged border of biological relevance.

The laboratory's historical control range was exceeded in the untreated and solvent control of strain WP2 uvrA pKM101 with and without S9 mix in the pre-experiment/experiment I and in the untreated control (with S9 mix) and solvent (with and without S9 mix) of strain WP2 uvrA pKM101 in experiment II. In strain WP2 pKM101 the lower limit of the laboratorys historical control range was not quite reached in the untreated control with and without metabolic activation in experiment I. These elevated colony counts were considered to be the result of biologically irrelevant fluctuations in the number of colonies and had no detrimental impact on the outcome of the study.

Appropriate reference mutagens were used as positive controls. They showed a distinct increase of induced revertant colonies.

5.0 **CONCLUSION**

a be stated that aditions reported, C ages or frameshifts in the constitution of the c In conclusion, it can be stated that during the described mutagenicity test and under the experimental conditions reported, Glyphosate technical did not induce gene mutations by base pair changes or frameshifts in the genome of the strains used.

6.0 REFERENCES

- Hollstein, M., J. McCann, F.A. Angelosanto and W.W. Nichols (1979) Short-term tests for carcinogens and mutagens Mutation Res. 65, 133-226
- 2. Maron D.M., J. Katzenellenbogen and B.N. Ames (1981)
 Compatibility of organic solvents with the Salmonella/Microsome Test
 Mutation Res. 88, 343-350
- 3. Maron D.M., Ames, B.N. (1983)
 Revised methods for the Salmonella mutagenicity test
 Mutation Res. 113, 173-215
- 4. Green, M.H.L. and W.J. Muriel (1976) Mutagen Testing Using TRP⁺ Reversion in Escherichia Coli Mutation. Res. 38, 3- 32
- Ames, B.N., J. McCann, and E. Yamasaki (1977)
 Methods for detecting carcinogens and mutagens with the Salmonella/mammalian microsome mutagenicity test
 In: B.J. Kilbey et al. (Eds.)"Handbook of Mutagenicity Test Procedures" Elsevier, Amsterdam, 1-17
- 6. de Serres F.J. and M.D. Shelby (1979)
 Recommendations on data production and analysis using the Salmonella/microsome mutagenicity assay
 Mutation Res. 64, 159-165

TABLE 1 **Summary of Results Experiment I**

Study Code: Harlan CCR 1264500 Date Plated: 23/09/2009 Date Counted: 29/09/2009

Metabolic <u>Activation</u>	Test <u>Group</u>	Dose Level (per plate)	Reverta	nt Colony Co	unts (Mean ±	(1)	Jens.	duse
			<u>TA</u> 1535	<u>TA 1537</u>	<u>TA 98</u>	<u>TA 100</u>	<u>WP2</u> pKM101	WP2 uvrA pKM101
Without Activation	Deionised water Untreated Glyphosate technical	3 μg 10 μg 33 μg 100 μg 333 μg 1000 μg 2500 μg 5000 μg	16 ± 5 14 ± 1 14 ± 5 18 ± 5 13 ± 2 14 ± 0 15 ± 2 14 ± 3 11 ± 3 10 ± 2	$ 15 \pm 2 14 \pm 1 14 \pm 1 15 \pm 2 16 \pm 2 14 \pm 2 16 \pm 2 12 \pm 4 13 \pm 3 14 \pm 1 $	35 ± 5 33 ± 9 28 ± 4 33 ± 11 29 ± 2 29 ± 5 31 ± 3 30 ± 6 24 ± 5 27 ± 4	$\begin{array}{c} 135 \pm 13 \\ 138 \pm 5 \\ 138 \pm 18 \\ 143 \pm 10 \\ 135 \pm 2 \\ 120 \pm 10 \\ 128 \pm 7 \\ 138 \pm 10 \\ 122 \pm 8 \\ 89 \pm 12 \\ \end{array}$	182 ± 12 185 ± 6 193 ± 17 202 ± 3 188 ± 5 189 ± 23 207 ± 11 170 ± 15 167 ± 31 110 ± 16	480 ± 34 476 ± 23 486 ± 27 477 ± 34 499 ± 38 494 ± 27 484 ± 20 451 ± 22 428 ± 9 427 ± 19
	NaN3 4-NOPD 4-NOPD MMS	10 μg 10 μg 50 μg	1508 ± 52	68 ± 4	302 ± 4	1574 ± 118	2705 ± 106	2997 ± 332
	MINIS	3 m sich	ger glor	origin of	iolate	440 - 40		
With Activation Key to Posit NaN3 2-AA 4-NOPD MMS	Deionised water Untreated Glyphosate technical	333 µg 1000 µg 2500 µg 5000 µg 10 µg 10 µg 30 µg 10 µg 31 µl 3 µg 100 µg 333 µg 1000 µg 333 µg 1000 µg 2500 µg 5000 µg 2.5 µg	18±3 17±4 16±4 17±3 16±3 16±2 19±3 17±6 15±3 20±4 302± 50	$ 15 \pm 2 15 \pm 5 16 \pm 3 16 \pm 4 16 \pm 1 16 \pm 4 18 \pm 3 16 \pm 1 14 \pm 1 18 \pm 3 378 \pm 105 $	38 ± 2 39 ± 6 37 ± 6 37 ± 6 40 ± 3 37 ± 7 35 ± 6 33 ± 5 32 ± 3 30 ± 2 1188 ± 9	148 ± 18 142 ± 24 157 ± 14 145 ± 3 157 ± 14 149 ± 1 159 ± 14 140 ± 12 132 ± 7 108 ± 7 2215 ± 144	193 ± 21 212 ± 22 197 ± 26 210 ± 22 212 ± 42 192 ± 12 204 ± 25 179 ± 14 189 ± 29 136 ± 6	531 ± 37 560 ± 10 536 ± 22 493 ± 29 545 ± 22 489 ± 31 496 ± 15 517 ± 26 456 ± 23 442 ± 4
Key to Posi	2-AA tive Controls	10 µg		103			2333 ± 145	1930 ± 138
NaN3 2-AA 4-NOPD MMS	sodium azide 2-aminoanthracene 4-nitro-o-phenylene-o- methyl methane sulfo	diamine onate						
Tilis do Conse								

TABLE 2 Summary of Results Experiment II

Study Code: Harlan CCR 1264500 Date Plated: 07/10/2009 Date Counted: 13/10/2009

	Metabolic Activation	Test Group	Dose Level (per plate)	Revertant (Colony Count	s (Mean ±SD)	ocumer	8. °9	JISE
				TA 1535	<u>TA 1537</u>	TA 98	TA 100	<u>WP2</u> pKM101	WP2 uvrA pKM101
	Without Activation	Deionised water Untreated Glyphosate technical	33 μg 100 μg 333 μg 1000 μg 2500 μg 5000 μg 10 μg	16 ± 4 16 ± 4 16 ± 4 17 ± 4 16 ± 5 16 ± 4 12 ± 2 9 ± 1 1521 ±	12 ± 3 12 ± 3 15 ± 2 11 ± 3 12 ± 2 13 ± 1 11 ± 3 10 ± 2	30 ± 4 26 ± 3 29 ± 4 28 ± 4 29 ± 1	145 ± 9 151 ± 7 143 ± 15 130 ± 7 116 ± 18 102 ± 15	222 ± 8 226 ± 10 256 ± 28 239 ± 7 241 ± 7 235 ± 8 231 ± 19 140 ± 10	474 ± 7 433 ± 33 456 ± 31 456 ± 6 456 ± 26 437 ± 23 419 ± 38 358 ± 8
		4-NOPD 4-NOPD MMS	10 μg 50 μg 3.0 μL	9±1 1521± 275 17±5 18±5	80 ± 3	366 ± 31 37 ± 3 $34 + 4$		1657 ± 34	1777 ± 67
	With Activation	Deionised water Untreated Glyphosate technical	33 µg 100 µg 333 µg 1000 µg 2500 µg 5000 µg 2.5 µg	17 ± 5 18 ± 5 17 ± 3 18 ± 2 19 ± 4 12 ± 3 13 ± 1 10 ± 2	19 ± 2 18 ± 2 18 ± 2 16 ± 5 17 ± 3 15 ± 3	30 ± 1 22 ± 1	144 ± 12 152 ± 6 147 ± 12 139 ± 10 142 ± 11 97 ± 20	266 ± 13 290 ± 16 274 ± 31 249 ± 33 270 ± 12 255 ± 16 228 ± 5	533 ± 33 527 ± 20 555 ± 14 603 ± 29 577 ± 32 546 ± 37 483 ± 27 466 ± 43
	Key to Positiv	2-AA 2-AA e Controls	2.5 μg 10.0 μg	297 ± 16	237 ± 11	1651 ± 162	1840 ± 169	1259 ± 7	2095 ± 20
This document is not the document.	NaN3 S 2-AA 2 4-NOPD 4 MMS n	e Controls odium azide -aminoanthracene -nitro-o-phenylene-d nethyl methane sulfor	iamine nate						

TABLE 3 Pre-Experiment and Experiment I: 1264500 VV Plate Incorporation

Study Code: Harlan CCR 1264500 Date Plated: 23/09/2009 Date Counted: 29/09/2009

, iles

Without metabolic activation

							90 (0)
	Strain	Compound	Dose	Mean	Standard	Ratio	Individual revertant
			level per	revertants	Deviation	treated /	colony counts
			plate	per plate		solvent	62 thui
							2 0 Vo. 10
	TA 1535	Glyphosate	3 µg	14.0	5.3	0.9	12, 20, 10
		technical	10 µg	17.7	5.0	0.1	17, 23, 13
			33 µg	13.3	1.5 0.0	0.8	12, 15, 13
			100 µg	14.0			14, 14, 14
			333 µg	15.0	2.5	0.90	16, 16, 13
			1000 μg	14.3	2.5	0.9	17, 14, 12
			2500 μg	11.0			13, 12,8
			5000 μg	10.0	2.0	0.6	12, 8, 10
		Deionised water		16.3	4.9	3,00	22, 13, 14
		Untreated Control		14.0	1.0		2 13, 14, 15
			د. ا	11 1110	001,100	We Ch	
	TA 1537	Glyphosate	3 μg	14.3	0.6	0.9	14, 15, 14
		technical	10 μg	0.0	(8,23)	10	16, 16, 12
				0/5.7	2,3 1.5	1.0	17, 14, 16
		ķ(14.7 15.7 14.0		0.9	14, 16, 12
		6	333 μg	15.7	215	1.0	17, 14, 16
		1,00	1000 μg	15.7 14.0 15.7 12.0	10	0.8	12, 16, 8
		3/1/10	2500 μg	12.0	3.1	0.8	12, 10, 6
		6, 9,	2300 μg 5000 μα	14.0 15.7 12.0 12.7 14.3	0.6	0.8	
		Data in a North	5000 μg	15.3	0.6 1.5	0.9	15, 14, 14
		Untracted Control	1, 1,5	14.3	0.6		15, 17, 14 15, 14, 14
		Untreated Control	0, 10, 10)* 14.3	0.0		13, 14, 14
	T / 00	-67-10\\-10\\-10\\-10\\\-10\\\-10\\\-10\\\-10\\\-10\\\-10\\\-10\\\-10\\\-10\\\-10\\\-10\\\\-10\\\\-10\\\\-10\\\\-10\\\\-10\\\\\-10\\\\\-10\\\\\-10\\\\\\\\	1, 20,	20.0	2.6	0.0	21 20 24
	1A 98	Glypnosate	βμg	28.0	3.6	0.8	31, 29, 24
	10 M	technical	10 µg	33.0	10.8	1.0	36, 21, 42
	1, W.	10 21, 900 YE	33 μg	28.7	2.1	0.8	31, 27, 28
90,	SUL WELL	atil is sell	100 μg	29.0	4.6	0.8	33, 30, 24
9, 19	10 1411 1	Co Fill My	333 μg	30.7	2.5	0.9	33, 31, 28
"HE CUI	Kr. Mo.	0,700	1000 μg	30.3	5.5	0.9	33, 34, 24
7. 90	46	Glyphosate technical Deionised water	2500 μg	24.3	5.1	0.7	23, 20, 30
	di,	· illi	5000 μg	27.0	3.6	0.8	26, 31, 24
on the		500 t t t t		34.7	4.9		29, 37, 38
This document is not the document.	1, (Deionised water		33.3	8.7		26, 31, 43

TABLE 3 Pre-Experiment and Experiment I: 1264500 VV Plate Incorporation (continued)

Study Code: Harlan CCR 1264500 Date Plated: 23/09/2009 Date Counted: 29/09/2009

Without metabolic activation

							-0,0	2
	Strain	Compound	Dose	Mean	Standard	Ratio	Individual revertan	all
			level per	revertants	Deviation	treated /	colony counts	.00:
			plate	per plate		solvent	S(0 '	<u> </u>
		GI I .	2	127.7	70.4		150 122 122	
	TA 100	Glyphosate	3 μg	137.7	18.4	1.0	158, 133, 122	
		technical	10 μg	143.0	9.5	1.1 2.0	154, 138, 137	
			33 μg	135.3	2.1	~~. 4/.		6.
			100 μg	120.3	9.8	0.9	109, 126, 126	S
			333 µg	128.3	7.2	0.0		
			1000 μg	137.7	10.0	6 190	137, 148, 128	
			2500 μg	121.7	8.0	0.9 0.7	114, 121, 130	
			5000 μg	89.0	12.2	0.7	102, 78, 87	
		Deionised water		134.7	13.0	"Up 0	154, 122, 146	
		Untreated Control		137,7	4.7	70,01	136, 143, 134	
				(0, 0)	110, 111	. 82, "W	9	
	WP2	Glyphosate	3 μg 🔇	193.3	O IXI	I.U	182, 213, 185	
	pKM101	technical	10 μg	202.0	17.1 3.5 4.6	1.1 1.1 1.0	198, 204, 204	
	_		33 µg		4.6	1.0	192, 183, 189	
			100 µg	188.7	23.0	1.0	183, 169, 214	
		7 8	333 μg	207.0	10,5	1.1	206, 218, 197	
		760	- Wi.com	(// L. L. ()		0.9	154, 183, 172	
		JIO. G	2500 μg	166.7	31.0	0.9	198, 166, 136	
		No His	5000 μg	110.0	16.1	0.6	125, 93, 112	
		Deionised water	10 10 7	169.7 166.7 110.0 181.7	12.3		168, 185, 192	
		Untreated Control	(84 0)	184.7	5.5		185, 179, 190	
	-	8 18 1 0 1 1	16 60	20				
	WP2.5	Glyphosate	3 µg	485.7	27.2	1.0	517, 468, 472	
	HVPA	technical	10 μg	477.3	34.4	1.0	460, 455, 517	
	nKM101	6. 1181 HUS	33 μg	499.3	37.6	1.0	456, 518, 524	
	49 CO)		100 μg	494.0	27.2	1.0	483, 474, 525	
200	2. 4. S.	Glyphosate technical Deionised water	333 μg	484.3	19.6	1.0	482, 505, 466	
760°	Ce, The	Car Hills Me	1000 μg	450.7	22.3	0.9	442, 434, 476	
in Pan	1, 571, 10	in of a con.	2500 μg	428.0	8.5	0.9	429, 419, 436	
	, 62.	90	5000 μg	427.0	19.1	0.9	438, 438, 405	
1,11,400	-/ .		5000 MB	480.3	33.7	0.7	516, 476, 449	
Consequential Consequential	000	Deionised water			22.7			

TABLE 3 Pre-Experiment and Experiment I: 1264500 VV Plate **Incorporation (continued)**

Study Code: Harlan CCR 1264500 Date Plated: 23/09/2009 Date Counted: 29/09/2009

Without metabolic activation

							-C), °C	9
	Strain	Compound	Dose	Mean	Standard	Ratio	Individual revertant	all
			level per plate	revertants per plate	Deviation	treated / solvent	colony counts	MION BIRDLY
			prate	per prate		Solvent	10,5 i	3
	TA 1535	NaN3	10 μg	1508.3	52.5	92.3	1520 1554 1451	
	TA 1535	4-NOPD	10 μg 50 μg	68.3	1.0	45)	69, 64, 72	
	TA 98	4-NOPD	30 μg 10 μg	301.7	4.0	87:	306-301-298	
	TA 100	NaN3	10 μg	1573.7	117.6	2 11-7	1568 1459 1694	< ·
	WP2			2704.7	*****	, 96. 9	2000, 2000, 2010)
	7777404	MMS	3 µl	2704.7	106.2	014.90	2686, 2609, 2819	
	WP2	3.63.60	2 1	2007.0	Chan ?	0,01	23(1, 2710, 2020	
	uvrA nKM 101	MMS	3 µl	2997.0	1113323	10 0.7()	3361, 2710, 2920	
	pication			10) 60, 7	<u> </u>	69, 64, 72 306, 301, 298 1568, 1459, 1694 2686, 2609, 2819 3361, 2710, 2920	
	Key to Pos	sitive Controls		.001	of told	2000		
This document is not the document	NaN3 4-NOPD	sitive Controls sodium azide 4-nitro-o-phenylene methyl methane sul	e-diamine	III Cilio	Ollie His	Wig For		
	MMS	methyl methane sul	Ifonate	telle of	60000	JiOlo.		
			(10) 25	11.98.910	i if ill all			
		65		17. St. 19.	1000			
		ide	Survey	HOI. WIS	ipile			
		10 Mil	3 W.O. 41	0,0				
		·26, 40.	11, 100	16. 6,				
		10,01,16	66, 0). Oo				
		81, 60, CO.	1. HS.	0,0				
	,0	1 101 90 1116	0, 0, (6)					
	. ()	Stylls illy	3.65 HOS.					
	0, 1	0 6 1 1/6/11/11	B					
	18 Con 15.	2010 V. C. C.	W. C.					
300	31 /1/ 05	11:01:00:00	,					
NOT	Ver The	Car Hills Me						
we yes	1, 50, 10	of Con						
111.900	, 6,	.600						
10,70	M	HUIS						
16 4	7.	O,						
ell,	2.)							
THE SUPE								
3000								
:50								
Yillin O								

TABLE 4 Pre-Experiment and Experiment I: 1264500 VV Plate Incorporation

Study Code: Harlan CCR 1264500 Date Plated: 23/09/2009 Date Counted: 29/09/2009

With metabolic activation

						chi es.	-90
Str	rain Compound	Dose	Mean	Standard	Ratio	Individual revertant	dille
		level per	revertants	Deviation	treated /	colony counts	00
		plate	per plate		solvent	S ()	
	1525 Clambanata	2	16.2	2.5	0.0	20-12-16	
1A	1535 Glyphosate	3 μg	16.3	3.5	0.9	20, 13, 16 15, 20, 17	
	technical	10 μg	17.3	2.5	0.9 0.9		
		33 μg	16.0	2.6	0.9	14, 45, 19	
		100 μg	15.7	1.5	0.9	14, 15, 19 16, 17, 14 17, 19, 22	
		333 μg	19.3	2.5	O.I.	17, 19, 22	
		1000 μg	16.7	5.8 2.5	0 03	10, 20, 20	
		2500 μg	14.7	2.5	0.8 1.1	15, 12, 17	
		5000 μg	19.7 18.3	3.5 3.2	LD	20, 23, 16	
	Deionised water		10.5	023.2	360,00	17, 22, 10	
	Untreated Control		17.3	4.0	70,01,	15, 22, 15	
			10, 9,	1/3, 111	3.65 W		
TA	1537 Glyphosate	3 μg 🛠		3,0	1.0	16, 13, 19	
	technical		16.3	3.0 3.5 0.6	1.1 1.1	13, 20, 16	
		10 μg 33 μg	16.3 15.7	0.6 3.8	1.1	17, 16, 16	
		100 µg	15.7	3.8	1.0	20, 14, 13	
	× ×	333 μg	177	2.9	1.2	16, 21, 16	
	NO.	1000 μg	15.7 17.7 15.7 14.3 17.7	3.8 2.9 0.6 0.6 3.2 2.1	1.0	15, 16, 16	
	JiO re	2500 μg	14.3	0.6	0.9	14, 15, 14	
	of the	5000 μg	17.7	3.2	1.2	20, 19, 14	
	Deionised water	ili do		2.1		17, 13, 16	
	Untreated Control	(66) (0	15,3 14.7	4.5		15, 19, 10	
	3, 60, 00, 0	W. 1/2 80	0,0				
	A 98 Glyphosate	3 µg	37.0	6.1	1.0	30, 41, 40	
6.	technical	10 μg		6.1	1.0	40, 41, 30	
. 0	A 98 Glyphosafe fechnical	33 па	40.0	2.6	1.0	37, 41, 42	
(the	182 101 1 1 1 CO	100 ug	37.3	6.5	1.0	37, 44, 31	
-0° × ×	1. Ell. 1101. CO. Elj	333 па	35.3	5.5	0.9	41, 35, 30	
20,00	the continue of	1000 µg	33.3	4.6	0.9	36, 28, 36	
20 / July 19	1, 101, 01, CD.	2500 µg	32.0	3.5	0.8	36, 30, 30	
1,111,400	6, 90	5000 µg	29.7	1.5	0.8	28, 30, 31	
10° 20° 20°	Deignised water	2000 µg	38.3	1.5	0.0	40, 38, 37	
1.6, 41.	Untreated Control		38.7	5.7		34, 37, 45	
City City	technical Deionised water Untreated Control		30.7	5.7		54, 57, 45	
This document is not the document.							
30CC 25CC							
:50							
I William Co							

TABLE 4 Pre-Experiment and Experiment I: 1264500 VV Plate Incorporation (continued)

Study Code: Harlan CCR 1264500 Date Plated: 23/09/2009 Date Counted: 29/09/2009

With metabolic activation

							<u></u>	,
	Strain	Compound	Dose	Mean	Standard	Ratio	Individual revertan	t of
			level per plate	revertants per plate	Deviation	treated / solvent	colony counts	20:
			prate	per prate		Solveill	65 7/10	- K.S
	TA 100	Glyphosate	3 μg	157.0	13.5	1.1	170, 158, 143	3.0
	1A 100	technical	9 μg 10 μg	145.3	3.2	1.0	144, 143, 149	
		teennear	33 μg	157.3	14.0	$\widehat{P.I}$		
			33 μg 100 μg	149.0	1.0	P 1.0	149, 148, 150	٠.
			333 μg	159.0	14.0		159, 145, 173	(O.)
			333 μg 1000 μg	140.3	11.5	0.9	140, 129, 152	
			2500 μg	131.7	110 7.2	0.9	140, 129, 132	
			2300 μg 5000 μg	108.0	7:2	0.9	106, 116, 102	
		Deionised water	3000 μg	148.3	7.2 17.8	91.70.00	129, 164, 152	
		Untreated Control		146.3 141.7	2/3	Sind of	152, 114, 159	
		Untreated Control		141,7	24.2	7,70,	132, 114, 139	
				1/1 1/2,	40, 4011	182 M		
	WP2	Glyphosate	3 μg	196.7	25.7	1.0	226, 178, 186	
	pKM101	technical	10 μg	210,3	25.7 21.9 42.2	1.0 1.1 1.1	185, 223, 223	
			10 μg 33 μg	212.0	42,2	1.1	249, 221, 166	
		C.	100 µg	192.0	11.9	1.0	184, 187, 206	
		-9,	333 μg	203.7 179.0 189.0 135.7 192.7	24,9	I.I	232, 194, 185	
		.80	1000 μg	179.0	14.0	0.9	179, 193, 165	
		chings.	2500 μg	189.0	28.9	1.0	222, 177, 168	
		010;101	5000 μg	135.7	6.0	0.7	135, 142, 130	
		Deionised water	, 0,00	192.7	21.1		187, 175, 216	
		Untreated Control	10.0	212.3	21.5		233, 214, 190	
This document is not the document		100,000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000	1. 110. 6),				
	WP2	Glyphosate technical	3 µg	535.7	22.5	1.0	555, 541, 511	
	uvrA	technical	10 µg	493.3	29.1	0.9	470, 484, 526	
	pKM101	Le, giz in,	33 µg	545.3	22.3	1.0	562, 554, 520	
	iles la la	400 yr	100 µg	488.7	30.6	0.9	472, 524, 470	
:00	CUT NOI	atil is sell	333 µg	496.3	15.1	0.9	479, 503, 507	
Plan	Jo 1411	Co. ill. Till.	1000 μg	517.3	25.7	1.0	502, 503, 547	
"He CO	. 60. 70	, 0, 700,	2500 μg	455.7	23.1	0.9	429, 469, 469	
200	76	rechnical string	5000 μg	442.0	4.4	0.8	447, 439, 440	
	Sil.	Deionised water		531.0	37.3		563, 490, 540	
is the				560.3	9.8		566, 566, 549	

TABLE 4 Pre-Experiment and Experiment I: 1264500 VV Plate **Incorporation (continued)**

Study Code: Harlan CCR 1264500 Date Plated: 23/09/2009 Date Counted: 29/09/2009

With metabolic activation

	Strain	Compound	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts	Talida .
	TA 1535	2-AA	2.5 μg	302.0	50.3	1650	276 360 270	
	TA 1537	2-AA 2-AA	2.5 μg 2.5 μg	377.7	105.5	24.6	497, 339, 297	
	TA 98	2-AA	2.5 μg	1188.3	9.3	31.0	1178, 1191, 1196	
	TA 100	2-AA	2.5 μg	2214.7	143.9	14.9	2094, 2374, 2176	
	WP2	2-AA	10 μg	2333.0	144.5	C92 10	2476 2187 2336	
	pKM101	2-AA	10 µ5	2555.0	(9)	6,0,0	COTTO, ALLI, 2000	
	WP2 uvrA	2-AA	10 µg	1930.0	137.9	3.6	1818, 2084, 1888	
	pKM101			×C	J. 667.7	910 9 S.	111115	
	Key to Pos	sitive Controls		Hech	of diory	Salion	276, 360, 270 497, 339, 297 1178, 1191, 1196 2094, 2374, 2176 2476, 2187, 2336 1818, 2084, 1888	
	2-AA 2	2-aminoanthracene		1118,413	Willia Chi	Jis ill	<u> </u>	
This document is not the document.	2-AA	2-AA sitive Controls 2-aminoanthracene	TO THE STAND OF TH	The of th	drifte of and	iolate ti		

TABLE 5 Experiment II: 1264500 HV2 Pre-Incubation

Study Code: Harlan CCR 1264500 Date Plated: 07/10/2009 Date Counted: 13/10/2009

Without metabolic activation

							1/1/2	. 113
-	Strain	Compound	Dose	Mean	Standard	Ratio	Individual revertant	.00
			level per	revertants	Deviation	treated /	colony counts	D.
			plate	per plate		solvent	40 6	<u> </u>
-							- 65 - 110 · ·	Op.
	TA 1535	Glyphosate	33 µg	16.3	3.5		16, 13, 20	
		technical	100 μg	17.0	3.6	1.1.	14, 16, 21	
			333 µg	15.7	4.6	1.0	13, 13, 21	
			1000 μg	15.7	3.8	1.0	14, 20, 13	
			2500 μg	12.0	1.7	0.8	10, 13, 13	
			5000 μg	8.7	0.6	0.60	9,9,8	
		Deionised water		15.7	3.8		13, 20, 14	
		Untreated Control		15.7	4.0	6,4	15, 12, 20	
-		Onti cated Control		13.7	111 -121	× 3/1.	(d), 12,20	
-				<i>X</i> (3 6. 9.	6 . 6	1/1/2	
	TA 1537	Glyphosate	33 µg	14.7	2.34	7.2	16, 16, 12	
		technical	100 µg	11.3	2.3 3.1 1.5 1.2 2.9 1.7	0.9 1.0	8, 14, 12	
			333 μg	11.7	1.5	1.0	13, 12, 10	
			1000 μg	~ (d3.3 <	3.2 S	JJ	14, 14, 12	
			2500 μg	11.3	2.9	0.9	8, 13, 13	
			5000 μg	100	1.7 8	0.8	12, 9, 9	
		Deionised water	01 33	12.0	3.5		10, 10, 16	
		Untreated Control	15.	120	35		10, 16, 10	
-		:00	20 110	12.0 12.0	·		10, 10, 10	
-	T 4 00	Charles of sign	00	26.3	42	1.0	26.20.24	
	TA 98	Glyphosate technical	33 μg			1.0	26, 29, 24	
		technical	100 μg	29.3	4.2	1.1	34, 28, 26	
		10 4 10 141	333 μg	27.7	4.0	1.0	23, 30, 30	
	7	S. 160, 00, 00	1000 μg	29.3	1.2	1.1	30, 28, 30	
	19	L 110, 00 1110	2500 μg	25.0	4.4	0.9	22, 30, 23	
	.	S will will a	5000 μg	20.7	1.5	0.8	22, 21, 19	
	0, 1,	Deionised water	21	27.0	1.7		26, 29, 26	
,	Ko, 15	Untreated Control	(0.)	29.7	3.8		34, 27, 28	
20	17 17 18	Deionised water Untreated Control						
,04	TA 300	Glyphosate	33 μg	145.0	8.9	1.0	148, 135, 152	
6, 4		technical	100 μg	151.0	6.9	1.1	155, 143, 155	
ing of	Kanly	teemikai	333 μg	142.7	15.3	1.0	151, 152, 125	
0, 00	214	:6	333 μg 1000 μg	129.7	6.5	0.9	136, 130, 123	
is the	SL,	c fills						
112 Ti	, ,	0)	2500 μg	115.7	18.3	0.8	122, 130, 95	
ell.	1		5000 μg	102.3	14.7	0.7	97, 91, 119	
illing alle		Deionised water		140.0	20.3		144, 118, 158	
· OCY		Untreated Control		137.0	32.2		147, 163, 101	
Us Or								
C C								
This document is not the documently								

Experiment II: 1264500 HV2 Pre-Incubation (continued) **TABLE 5**

Study Code: Harlan CCR 1264500 Date Plated: 07/10/2009 Date Counted: 13/10/2009

Without metabolic activation

							~e),	0
	Strain	Compound	Dose	Mean	Standard	Ratio	Individual revertant	, 1/3
			level per	revertants	Deviation	treated /	colony counts	0
			plate	per plate		solvent	Or Sign	<i>Q</i> ,
							- 10 7 b.	7/,
	WP2	Glyphosate	33 µg	256.3	28.3	1.2	289, 241, 239	
	pKM101	technical	100 μg	239.0	7.0	1.1	232, 246, 239	
			333 μg	241.0	7.2	1.1	243, 247, 233	
			1000 μg	235.3	8.1	dY	244, 228, 234	
			2500 μg	231.3	18.6	010	212, 233, 249	
			5000 μg	140.0	9.5	0.6	141, 149, 130	
		Deionised water		222.0	8.0	, CO, " SO,	222, 230, 214	
		Untreated Control		226.3	9.6	10 10,0	235, 228, 216	
		Chili carca Control		220.5	- NO NO	6, 9	- 255, 226, 236	
		G1 1 .	22	45.6.25	20 5 20	8 7 8 8	103 5171 171	
	WP2	Glyphosate	33 μg	456.3	07	0.0	421, 474, 474	
	uvrA	technical	100 µg	456.0	617	1.0 1.0 0.9 0.9 0.8	460, 449, 459	
	pKM101		333 µg	456.3	25.5	3.64.0	456, 482, 431	
			1000 μg	437.0	22.9	0.9	463, 420, 428	
			2500 μg	418.7	38.1	0.9	385, 411, 460	
			5000 μg	358.3	7.6	0.9 0.9 0.8	355, 367, 353	
		Deionised water		473.7	7.6 6.7 32.5		472, 481, 468	
		Untreated Controls	0(0) 85)	433,3	32.5		398, 462, 440	
			10, 01	11: 0				
	TA 1535	NaN3	10 µg	1521.0	274.6	97.1	1675, 1204, 1684	
	TA 1537	· · · · · · · · · · · · · · · · · · ·	(7, 11)		3.1	6.7	83, 77, 81	
	TA 98	4-NOPD	30 μg	2663	30.5	13.6	368, 335, 396	
		4-NOPD 4-NOPD NaN3 MMS	10 μg	300.3				
	TA 100 WP2	NaN3	то це	S 10/2./	255.4	11.9	1856, 1381, 1781	
	/-	MMS	3.0 μL	1657.0	34.0	7.5	1657, 1623, 1691	
	WP2	SUP S WILL	TO STO					
	uvrA	MMS	3.0 µL	1777.3	67.2	3.8	1822, 1700, 1810	
	pKM101	MMS MMS	50 µg 10 µg 10 µg 3.0 µL 3.0 µL				, ,	
	(4) (4) 	10 10 20° x						
206	Key to Posi	itive Controls						
	NoN2	sodium azide						
No Prill	4-NOPD	4-nitro-o-phenylene-	diamine					
1,11,400	MMS	methyl methane sulf						
0000	19	methyrmethane sun						
19 11	, O.	60						
and the state of t	3, ,	0						
The let								
C)								
400								
13/5								
This document is not the document								

TABLE 6 Experiment II: 1264500 HV2 Pre-Incubation

Study Code: Harlan CCR 1264500 Date Plated: 07/10/2009 Date Counted: 13/10/2009

With metabolic activation

Strain	Compound	Dose	Mean	Standard	Ratio	Individual revertant	7 13
		level per	revertants	Deviation	treated /	colony counts	allo
		plate	per plate		solvent	*0 0	.0.
TA 1525	Clymbosoto	22.1.0	172	2.1	1.0	19 16 15	ijo.
1A 1555	• -				1.0	21, 10, 13	O'
	technical				1.0	16 24 17	
						10, 24, 17	
					11- 10		
					10.0	012.00	•
	Deionical water	5000 μg				16 12 22	
				(9)		10, 13, 23	
	Onti cated Control		17.7		6,9	12, 19, 22	
TD A 1535	Clbt-	22 -	10.1 %	11. 12	2 × 2 ×	21 17 20	
1A 1537	* -		19.3	021	0.1		
	tecnnical		18.0	20, 40, 30	1.0	20, 17, 17	
			18.3	2:1	3.0	19, 16, 20	
			16.0	4.6	0.9		
		2500 μg	0/.3	2.9	0.9		
	D		15.0	(/ 20)	0.8		
				11 2.20	·		
	Untreated Control	10 10 11 11 11 11 11 11 11 11 11 11 11 1	10.7	0 2.10		19, 15, 16	
	. 60	20 50.	1/1/2 10:	. x 0			
TA 98	Glyphosate	33 µg	34,7	1.2			
	technical	100 µg	33.3	3.8			
	1,8,0,00	333 μg	36,0	1./			
	alo chi alli	1000 μg					
7	> 10,000	2500 μg					
,45	SUP SUITE	5000 μg			0.6		
(V)	Deionised water	1, 1/10 -					
0, 4,	Untreated Control	LOS.	33./	4.2		29, 35, 37	
10 400	60. 6. 300 %						
TA 100	Glyphosate						
10 141.7	technical						
Kr. 110	0, 700						
46	:6	1000 μg	139.0	10.4	0.9	151, 132, 134	
(/)		2500 μg	141.7	11.0	0.9	154, 133, 138	
0	6 10			20.0	0.6	92, 119, 80	
3,	O. C.	5000 μg	97.0		0.0	4.15 4.50 4.40	
). Di.	Deionised water Untreated Control	5000 μg	151.7 142.0	16.1 13.2	0.0	145, 170, 140 127, 152, 147	
	TA 1535 TA 1537	Deionised water Untreated Control TA 1537 Glyphosate technical Deionised water Untreated Control TA 98 Glyphosate technical	TA 1535 Glyphosate technical 33 μg 1000 μg 2500 μg 5000 μg Deionised water Untreated Control 333 μg 1000 μg 2500 μg Deionised water Untreated Control 333 μg 1000 μg 2500 μg 5000 μg TA 1537 Glyphosate 33 μg 1000 μg 2500 μg 5000 μg 333 μg 1000 μg 333 μg 1000 μg 2500 μg 5000 μg 333 μg 1000 μg 2500 μg 2500 μg 333 μg 1000 μg 2500 μg 2500 μg 2500 μg	TA 1535 Glyphosate technical 100 μg 17.7 333 μg 19.0 1000 μg 12.0 2500 μg 13.3 5000 μg 9.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7	Plate per plate	Plate per plate per plate solvent	TA 1535 Glyphosate technical 100 μg 17.7 2.3 1.0 21, 16, 15 19 333 μg 19.0 4.4 1.1 16, 24, 17 1000 μg 12.0 3.5 0.7 10, 10, 16 2500 μg 13.3 0.6 0.8 13, 14, 13 5000 μg 9.7 2.1 0.6 12, 9, 8 Deionised water Untreated Control 17.7 5.1 12, 19, 22 TA 1537 Glyphosate 33 μg 19.3 2.1 1.1 21, 17, 20 technical 100 μg 18.0 1.7 1.0 20, 17, 17 333 μg 18.3 2.1 1.0 19, 16, 20 1000 μg 16.0 4.6 0.9 15, 12, 21 2500 μg 17.3 2.9 0.9 19, 14, 19 5000 μg 15.0 2.6 0.8 17, 12, 16 Deionised water Untreated Control 16.7 2.1 19, 17, 19 Untreated Control 16.7 2.1 19, 15, 16 TA 98 Glyphosate 33 μg 34.7 1.2 0.9 36, 34, 34 technical 100 μg 33.3 3.8 0.9 36, 35, 29 333 μg 36.0 1.7 1.0 35, 35, 38 1000 μg 35.3 2.5 0.9 38, 35, 33 25000 μg 35.7 1.2 1.0 37, 35, 35

Experiment II: 1264500 HV2 Pre-Incubation (continued) **TABLE 6**

Study Code: Harlan CCR 1264500 Date Plated: 07/10/2009 Date Counted: 13/10/2009

With metabolic activation

							\C\	<u>_</u> 0
	Strain	Compound	Dose	Mean	Standard	Ratio	Individual revertant	7 173
			level per	revertants	Deviation	treated /	colony counts	200
			plate	per plate		solvent	0.00	.0.
							911	
	WP2	Glyphosate	33 μg	273.7	31.1	1.0	283, 239, 299	
	pKM101	technical	100 µg	273.7	21.4	1.0	265, 298, 258	
			333 µg	248.7	32.7	0.9	286, 225, 235	
			1000 μg	270.3	12.0	10	271, 282, 258	
			2500 μg	255.0	15.6	1.0	264, 237, 264	
			5000 μg	228.0	4.6 C		229, 223, 232	
		Deionised water		266.0	12.8	Y CO YOU	263, 255, 280	
		Untreated Control		290.3	15.5	0 000	308, 279, 284	
					11 M	x 2 0 0	"No 01	
	WP2	Glyphosate	33 µg	554.7	\$3.5	1.0	541, 568, 555	
	uvrA	technical	100 μg	603.0	28.6	$I_{i}I_{i}I_{i}I_{i}I_{i}I_{i}I_{i}I_{i}$	570, 619, 620	
	pKM101		333 μg	577.3	31.9	9 47 6	543, 606, 583	
	pizition		1000 μg		37.0	1.0	589, 525, 525	
			2500 μg	482.7	28.6 31.9 37.0 27.3	1.1 1.0 0.9 0.9	470, 464, 514	
			5000 μg	466.3	43.4	0.0	516, 447, 436	
		Deionised water		532.7	33.0	1. 0.5	539, 497, 562	
		Untreated Control	0(0) 85)	527.3	33.0 20.4		536, 504, 542	
		Unit eated Control	10 10 10 11	0. 34X3	20.40		330, 304, 342	
	T. 4535	344 3085	5 24	207.0	:0 15.7	17.1	204 214 202	
	TA 1535	2-AA 2-AA	2.5 μg	297.0	15.7	17.1	294, 314, 283	
	TA 1537	2-AA	2.5 µg	237.0	11.4	12.9	250, 232, 229	
	TA 98	2-AA 9 0 0	23 μg	1031.3	161.6	44.2	1826, 1621, 1507	
	TA 100 WP2	2-AA	2.5 µg	297.0 237.0 1651.3 1840.3 1259.3	169.4	12.1	1853, 2003, 1665	
	pKM101 WP2	2-AA 2-AA 2-AA 2-AA	10.0 µg	1259.3	6.7	4.7	1255, 1256, 1267	
This document is not the document	uvrA pKM101	2-AA 2-AA 2-AA 2-AA	2.5 μg 10.0 μg 10.0 μg	2095.3	20.2	3.9	2072, 2108, 2106	
	3 10 C	10 01 70 x						
,00	Key to Pos	itive Controls						
Q ¹	2-AA	-aminoanthracene						
"ille" OC	, Kanal	0.700						
	AR	is s						
is the	2	E FILL.						
A LIVE	9.	0,						
el,								
chill.								
300								
is com								
Yu.								
*								

APPENDIX 1 Historical Control Data

These data represent the laboratory's historical control data from January 2008 until October 2008 representing approx. 600 experiments (WP2 uvrA pKM101 the historical data from January 2008 until October 2008 are based on approx. 150 experiments; the control data for strain WP2 pKM101 are from January 2008 until October 2008 are based on approx. 80 experiments).

	Strain		without S9 mix			with S9 mix				
			Mean	SD	Min	Max	Mean	SD	Min	Max
		Solvent control	17	5.17	9	39	0 2₽·	5.82	8	41
	TA 1535	Negative control	17	5.33	9	38	20	6.23	10	46
		Positive control	2024	315.78	1041	3138	294	140.02	102	945
		Solvent control	13	3.12	6.0	25	15 15 P	3.90	9	35
	TA1537	Negative control	13	3.38	6.05	26	ON W185	4.05	8	31
		Positive control	116	30.52	68.0	407	204	69.54	72	454
		Solvent control	30	5.59	13 6	59 55	39	6.34	20	60
	TA 98	Negative control	31	5.45			<i>i</i> 9 39	6.53	19	59
		Positive control	489	169.76	211/1	1694	1455	463.01	200	3553
		Solvent control	130	18.79	89	224	155	22.54	92	218
	TA 100	Negative control	139	17.30	93	205	147	21.78	92	234
		Positive control	2160	342.67	588	3379	1839	621.27	404	3868
		Solvent control	374	47.29	240	454	406	44.26	268	506
	WP2uvrA	Negative control	380	42.63	255	446	441	50.20	285	512
	pKM101	Positive control	3058	168.37	1369	5367	1920	468.32	1163	3597
		Solvent control	251	37.68	157	312	281	44.48	174	358
	WP2	Negative control	273	39.53	188	339	322	54.45	216	440
	pKM 101	Positive control	3020	830.78	1522	4451	1972	652.16	1043	3848
This document is not the document.	Mean = r SD = star	nean value of rendered deviation	evertants,	•	inimal va	lue/Max	= maximal	value		

APPENDIX 2 Copy of GLP Certificate

Hess, Ministerium für Umwelt, Energie, Landwirtschaft und Verbraucherschutz, Mainzer Straße 80 D65189 Wiesbaden (Name und Adresse der GLP-Überwachungsbehörde/Name and address of the GLP Monitoring Authority

Report Number: 1264500 Page 38 of 39

APPENDIX 3 Certificate of Analysis syngenta Certificate of Analysis Glyphosate Technical Batch 1D 569753 (BX20070911) Batch Idealification 5697530 Product Design Code ASFŸFX. Product by Common Name Glyphosate Nantong Jiangshan Agrochemicals & Chemicals Source Limited, Jiangsu, China BX20070911 Other ID Chemical Analysis (Active Ingredient Content) Identity of the Active Ingredients Glyphosate* Methodology Used for Characterization Physical Analysis Confirmed (LC/MS) OHPLO Physical Analysis Appearance White powder (dry) Stability <10°C Storage Temperature Expiration date AUG-2010 Transport and handling for lab use at room temperature is acceptable. Refrigeration is recommended if This document is not the document by any publicate the storing beyond two weeks to minimize moisture uptake. The applicity of this test substance will be determined concurrently through reanalysis of material held in inventory under GPP conditions at Syngenta Crop Protection, Inc., Greensboro, NC. documentation, protocols, any amendments to study protocols and reports pertaining to this study are maintained in the Syngenta Crop Protection Archives in Greensboro, NC. Authorization: This Certificate of Analysis is summarizing data (marked with an asterisk) from a study that has been 9-1)-09 Date Senior Analytical Chemist Analytical & Product Chemistry Department

Document 10404593.doc

Page 1 of 1

Certificate of Analysis Study TK6012533