STUDY TITLE

HR-001: In Vitro Cytogenetics Test

DATA REQUIREMENT

Required under U.S. EPA FIFRA Guidelines, Subdivision F

AUTHOR

The Institute of Environmental Toxicology
2-772 Suzukieche, Kodaira, Tokyo 187, Japan

LABORATORY PROJECT

TET 94-01'

STATEMENT OF DATA CONFIDENTIALITY CLAIMS

HR-001: In Vitro Cytogenetics Test (IET 94-0143)

not be pureled in any oth ankyo Co. Ltd. ankyo Co. This report contains the unpublished results of research sponsored by Sankyo Co., Ltd. These results may not be published, either wholly or in part, or reviewed or quoted in any other publication The document of the document that there of the bearing the document of the doc

GLP STATEMENT

HR-001: In Vitro Cytogenetics Test (IET 94-0143)

This study was conducted in conformity to Good Laboratory Practice standards (GLPs) of MAFF in Japan (59 NohSan No. 3850, 1984), EPA in U.S.A. (FIFRA: 40 CFR 160, 1989), and OECD (OECD Principles of GLP, 1981).

Administrator:

Director General

Study Director

Chief, Laboratory of Genetic Toxicology
Toxicology Division

Sponsor:

Sankyo Company, Ltd.

Date

Date

--OO1: In Vitro Cytogenetics Test
(IEI 94-0143)

age is intentionally left blank for country specific quirements.

HR-001: In Vitro Cytogenetics Test

OBJECTIVE

The purpose of this study was to evaluate the clastogenic ial of HR-001 in cultured mammalian cells. potential of HR-001 in cultured mammalian cells.

SPONSOR

Name:

Address:

Sankyo Company, Ltd.
7-12, 2-chome

Tokyo 104, Japan

TESTING INSTITUTION

Name:

Institute of Environmental Toxicology

Address:

2-772 Suzuki-cho, Kodaira, Tokyo 187, Japan

TESTING FACILITY

Caurille document The Institute of Environmental Toxicology

The Institute of Address: 1770 2-772 Suzuki-cho, Kodaira, Tokyo 187, Japan

Administrator:

Director General

HR-001: In Vitro Cytogenetics Test (IET 94-0143)

STUDY DIRECTOR AND SUPERVISORY PERSONNEL

We, the undersigned, hereby declare that the study was performed under our supervision in conformity to the GLPs of MAFF in Japan (59 NohSan No. 3850, 1984), EPA in U.S.A. (FIFRA: 40 CFR 160, 1989), and OECD (OECD Principles of GULP, 1981) and the Guidelines of MAFF in Japan (59 Nohsan No. 4200, 1985), EPA in U.S.A. (Pesticide Assessment Guidelines, Subdivision F, 1991) and OECD (OECD Guideline No. 473, 1983).

Study Director and Mutagenicity:

Ph.D.

Chief, Laboratory of Genetic Toxicology Toxicology Division

Executive Supervisor:

D.V.M., Ph.D., D.J.C.V.P.

D.J.S.T.P.

Director of Toxicology

HR-001: In Vitro Cytogenetics Test (IET 94-0143)

PERSONNEL IN CHARGE

Mutagenicity Examination:

D.V.M., Ph.D.

Senior scientist, Laboratory of Genetic Toxicology
Toxicology Division Technician, Laboratory of Genetic Toxicology
Toxicology Division

Report Preparation:

Ph.D.

Chief, Laboratory of Genetic
Toxicology Division

Chief, Laboratory c
Toxicology Division

QUALITY ASSURANCE AUTHORIZATION

HR-001: In vitro Cytogenetics Test (IET 94-0143)

Report

			-0/01
-	Inspection date	Report date to the study director	Report date to the administrator
Protocol	1/12/1995	1/12/1995	1/12/1995
الما المناز المناز عمد المنا مناز مناز المناز المنا	1/24/1995	1/24/1995	1/24/1995
Study	4/11/1995	4/11/1995	4/11/1995
procedure	4/13/1995	4/13/1995	4/13/1995
Raw data	5/19-22/1995	5/22/1995	5/22/1995
Report	5/19-22/1995	5/22/1995	5/22/1995
9/9/	5/29/1995	5/29/1995	5/22/1995
.0	VO 2(1, 1/2, 0)		

By the above inspections, it was assured that the reported methods and procedures were found to describe those used and the results to reflect the raw data generated during the conduct of this study accurately.

Quality Assurance Manager:

May 29, 1995

D.V.M., Ph.D.,

D.J.C.V.P.

Chief, Quality Assurance Unit

CONTENTS

· · · · · · · · · · · · · · · · · · ·	Page
TITLE PAGE	. 1
STATEMENT OF DATA CONFIDENTIALITY CLAIMS	2
GLP STATEMENT	3
FLAGGING STATEMENT	4
QUALITY ASSURANCE AUTHORIZATION	9
CONTENTS	10
1. SUMMARY	13
2. OBJECTIVE	15
3. TEST SUBSTANCE	15
4. MATERIALS AND METHODS	
	15
2) Cell culture	
	16
and positive control compounds solutions	16
4) Preparations of S9 mix	17
and positive control compounds solutions 4) Preparations of S9 mix	18
4) Preparations of S9 mix 5) Preliminary growth inhibition test 6) Cytogenetics tests (1) Direct method	
(1) Direct method	20
(2) Metabolic activation method	20
(3) Chromosome preparations and staining	O i

	Page
(4) Analysis of chromosome aberrations	122
(5) Classification of chromosome aberrations	2,3
(6) Statistical analysis	24
7) Criteria of a valid test	24
8) Evaluation of results	25
1) Preliminary growth inhibition test	
1) Preliminary growth inhibition test	26
2) Cytogenetics test (direct method)	26
3) Cytogenetics test (metabolic activation method)	27
6. CONCLUSION	29
7. REFERENCES	29
Table 1. Preliminary growth inhibition test Table 2. Cytogenetics test	31
(direct method, 24-hr treatment) Table 3. Cytogenetics test	32
Table 3. Cytogenetics test (direct method, 48-hr treatment) Table 4. Cytogenetics test (metabolic activation method, 6-hr treatment, +S9 mix) Table 5. Cytogenetics test (concurrent control, 6-hr treatment, -S9 mix)	33
(metabolic activation method, 6-hr treatment, +S9 mix)	34
Table 5. Cytogenetics test	
(concurrent control, 6-hr treatment, -S9 mix)	35

	Page
Fig. 1. Cell growth and dose levels	ON.
(direct method, 24-hr treatment)	- 36
Fig. 2. Cell growth and dose levels	
(direct method, 48-hr treatment)	37
Fig. 3. Cell growth and dose levels	
(metabolic activation method, 1st Exp.)	38
Fig. 4. Cell growth and dose levels	
(metabolic activation method, 2nd Exp.)	39
Appendix 1 Historical control data	- 40
Fig. 1. Cell growth and dose levels (direct method, 24-hr treatment) Fig. 2. Cell growth and dose levels (direct method, 48-hr treatment) Fig. 3. Cell growth and dose levels (metabolic activation method, 1st Exp.)) Fig. 4. Cell growth and dose levels (metabolic activation method, 2nd Exp.) Appendix 1 Historical control data	
12	

1. SUMMARY

The in vitro cytogenetics test using cultured Chinese hamster lung (CHL) cells was performed to evaluate the clastogenic potential of HR-001. In the direct method, the cells were continuously treated with HR-001 at 4 doses of 125, 250, 500 and 1000 µg/ml for 24 hours, and at 4 doses of 62.5, 125, 250 and 500 µg/ml for 48 hours. In the metabolic activation method, the cells were treated with HR-001 at 4 doses of 250, 500, 1000 and 2000 µg/ml for 6 hours in the presence of S9 mix and fixed 18 hours after the end of the treatment. The highest dose of HR-001 for each treatment was chosen on the basis of the results of the preliminary cell growth inhibition test. The dose of 1000 µg/ml in the 24-hr treatment and the dose of 2000 µg/ml in the metabolic activation system gave high cytotoxicity to the cells so that chromosome preparations were not obtained from these cultures.

The metaphase analysis showed that there were no significant increases in the frequencies of the metaphases with structural chromosome aberrations or polyploid cells at any analyzable doses of HR-001 in any treatments when compared with the concurrent solvent controls.

On the other hand, chromosome aberrations were observed at a significantly high frequency in the positive controls treated with

mitomycin C (in the direct method) and benzo(a)pyrene (in the metabolic activation system).

absence of the me
absence of t It was concluded from the above results that, under the test conditions, HR-001 did not induce either structural or numerical chromosome aberrations in the presence or absence of the metabolic

2. OBJECTIVE

The objective of this study was to evaluate the clastogenic potential of HR-001 in cultured Chinese hamster lung cells.

3. TEST SUBSTANCE

Code name:

HR-001

Lot No.:

94090831

Purity:

95.68%

Appearance at normal temperature

White crystal

Water, 12 g/1 (25°C)

Storage condition:

Dark cold room (5°C)

MATERIALS AND METHODS

The CHL cells1) established from the lung of Chinese hamster were used. The model number of chromosomes was 25 and doubling time was about 15 hours. The cells of which the passage number was 11 were obtained from Dr. National Institute of

Hygienic Science, Tokyo, Japan, on January 12, 1984, and stored in liquid nitrogen to prevent any changes of their characteristics and properties. The cells were thawed immediately before the initiation of this study and confirmed not to be contaminated with Mycoplasma before use.

2) Cell culture

Cells were cultured in 100-mm Falcon tissue culture dishes (Becton Dickinson Labware) at 37°C in a humidified atmosphere of 5% CO₂ in air. The growth medium was Eagle's MEM (Nissui Pharmaceutical Co., Ltd., Japan) supplemented with 10% newborn calf serum (Lot No. 30520007, ICN Biomedicals Japan Co., Ltd.). Subcultivation of the cells was done using 0.25% trypsin solution (ICN Biomedicals Japan Co., Ltd.).

3) Preparations of the test substance and positive control compounds solutions

The test substance HR-001 was dissolved in Hanks' balanced salt solution (HBSS) (Nissui Pharmaceutical Co., Ltd., Japan) or directly dissolved in culture medium when needed to be prepared at 2000 µg/ml or more. Mitomycin C (MMC, 2 mg/vial, Kyowa Hakko Kogyo Co., Japan) used as a positive control compound in the direct method was dissolved in physiological saline (Otsuka Pharmaceutical Co.,

(IET 94-0143)

Ltd., Japan). Benzo(a)pyrene (B(a)P, 98%, Sigma Chemical Co., U.S.A.) used as a positive control compound in the metabolic activation method was dissolved in dimethyl sulfoxide (DMSO, >99%, Tokyo Kasei Kogyo Co., Japan). A volume of the test substance solutions added to the culture medium was 10% (v/v). All the above solutions were prepared immediately before the experiments. The residual solutions were discarded in each experiment.

4) Preparations of S9 mix

A metabolic activation system (S9 mix) was prepared by mixing the 9000×g supernatant fraction of the rat liver homogenate (S9 fraction) and co-factor (freeze-dried co-factor mixture, Lot No. 718;

, Japan) immediately before use. S9 fraction with following data was purchased from Kikkoman Corporation (Chiba, Japan), stored at -80°C, and used within 6 months after purchase.

(1) Amimal:

Sprague-Dawley rat (Slc:SD)

male, 7 weeks old

(2) Body weight:

192 - 229 g

(3) Inducer:

phenobarbital (PB: Wako Pure Chemical

Industries Ltd., Japan)

5,6-benzoflavone (BF: Aldrich Chemical

Co., Inc., U.S.A.)

(IET 94-0143)

(4) Route of administration: intraperitoneal injection

(5) Dosage: Day 1: PB 30 mg/kg

Day 2: PB 60 mg/kg

Day 3: PB 60 mg/kg and BF 80 mg/kg

Day 4: PB 60 mg/kg

(6) Protein content: 24.40 mg/ml

(7) P-450 content: 1.04 nmol/mg protein

(8) Date of preparation: October 6, 1994

(9) Lot No.: RAA-316

(10) Sterility test: passed

(11) Enzyme activity measured by mutagenicity: good

(12) B(a)P enzyme activity: 11.20 (relative value, non-induced control = 1.00)

The enzyme activity of this S9 fraction was re-evaluated by microbial mutagenicity in our laboratory and its sterility was checked again before use. The components of S9 mix were as follows: 30% (v/v) S9 fraction, 8 mM MgCl₂, 33 mM KCl, 5 mM glucose-6-phosphate, 4 mM NADH, 4 mM NADPH, and 100 mM sodium phosphate buffer (pH 7.4).

5) Preliminary growth inhibition test

A preliminary growth inhibition test was performed to determine doses of the test substance in the cytogenetics test. CHL cells were seeded at a density of 1.0×10^5 cells in 60-mm Falcon

tissue culture dishes with 5 ml of medium, and incubated for about 48 hours. The cultures were treated with HR-001 at the highest dose of 1 mg/ml and 8 more doses separated by a factor 2. A solvent control treated with HBSS was included in this test.

In a direct method, the cells were treated with the test substance for 24 or 48 hours. After the treatment, the medium was removed and the cells were fixed with ethanol for 5 minutes. Fixed cells were stained with 3% Giemsa solution (Merck Ltd,. U.S.A., diluted in pH 6.8 phosphate buffer) for about 20 minutes at room temperature, rinsed with tap water, and then air-dried. Staining intensities (= cell densities) were optically measured by Monocellater (Olympus Optical Corporation, Tokyo, Japan) and a relative cell growth value of each culture was measured by comparing with the staining density in the concurrent solvent control.

In a metabolic activation method, the medium was replaced with 3 ml of the medium containing S9 mix (fresh medium:S9 mix=5:1) and then the test substance solutions were added to the cultures. Six hours later, the treatment medium was removed and the cells were rinsed twice with HBSS, and incubated in fresh medium for a further 18 hours. After fixation and staining in the same way as the direct method, the relative cell growth values were obtained.

The second growth inhibition test with the metabolic activation system was carried out with higher doses of the test

substance, where $5~\text{mg/ml}^2$ was set as the highest dose, because no reduction of cell growth was seen at any doses in the first growth inhibition test with the metabolic activation system,

Duplicate cultures were used for each experimental point and their relative values were averaged.

- 6) Cytogenetics tests 3), 4)
- (1) Direct method

CHL cells were seeded at a density of 2×10^5 cells in 100-mm Falcon tissue culture dishes with 10 ml of medium, and the test substance solutions were added to the cultures 48 hours after seeding. On the basis of the results of the preliminary growth inhibition test, 4 doses of 125, 250, 500 and 1000 µg/ml for the 24-hr treatment and 4 doses of 62.5, 125, 250 and 500 µg/ml for the 48-hr treatment were selected. An untreated negative control, a solvent control treated with HBSS, and a positive control treated with MMC at a final concentration of 0.1 µg/ml were included in the experiment. Chromosome preparations were made at 24 and 48 hours after addition of the test substance.

Duplicate cultures were used for each dose.

(2) Metabolic activation method

CHL cells were seeded at a density of 2×10^5 cells in 100-mm

Falcon tissue culture dishes with 10 ml of medium. After about 48 hours the medium was replaced with 5 ml of the medium containing S9 mix (fresh medium: S9 mix=5:1) and then the test substance solutions were added. On the basis of the results of the preliminary growth inhibition tests, 4 doses of 250, 500, 1000 and 2000 μg/ml were selected. The experiment system included an untreated negative control, a solvent negative control, and a positive control treated with B(a)P at a final concentration of 40 µg/ml. The medium was removed after 6 hours of the treatment. The cells were rinsed twice with HBSS and re-incubated in fresh medium. Chromosome preparations were made at 18 hours after the medium change.

A concurrent control experiment against S9 mix treatment was also conducted, where all conditions were the same as the above metabolic activation method except for not adding S9 mix.

Duplicate cultures were used for each dose.

(3) Chromosome preparations and staining
Chromosome preparations were —

drying method. Colch:

Japan) — Chromosome preparations were made by a conventional airdrying method. Colchicine (Wako Pure Chemical Industries, Ltd., Japan) was added to the cultures at a final concentration of 0.5 µg/ml 2 hours before harvest to arrest metaphase. The cells were detached by 0.25% trypsin and swollen with a hypotonic solution

(0.075 M KCl) for about 15 minutes at room temperature. The cells were fixed with Carnoy's solution (methanol:acetic acid=3:1), dropped on two glass slides per culture, and air dried. The chromosome preparations were labeled with code numbers and stained with 2% Giemsa solution for 15 minutes at room temperature.

(4) Analysis of chromosome aberrations

Total number of 200 well-spread metaphase cells for each dose (100 metaphase cells/culture) were examined under 1000 × magnification by light microscopy. Diploid metaphase cells which possessed the typical karyotype of CHL cells (number of chromosome=25±2) and polyploid metaphase cells were analyzed for a structural chromosome aberration. Structural chromosome aberrations were classified into different types. Each number of aberrations was recorded. The number of chromosomes of polyploid cells was also recorded. Mitotic index was assessed by examination of 1000 cells from each culture. The following data per culture were summarized in a tabular form:

- 1) Number and frequency of polyploid cells.
- 2) Number and frequency of each structural chromosome aberration.
- 3) Number and frequency of metaphase cells with structural chromosome aberrations (both including and excluding gaps).

- (5) Classification of chromosome aberrations

 Chromosome aberrations were classified according to the following criteria:
- A) Structural chromosome aberrations
- (a) Gap (g): An achromatic (unstained) region in one chromatid or both sister chromatids at the identical loci without dislocation of the segment. The size of achromatic region is shorter than the width of chromatid.
- (b) Chromatid break (ctb): An achromatic (unstained) region in one chromatid. The size of achromatic region is greater than the width of chromatid, or lateral dislocation of the fragment is observed. Chromatid fragments are included.
- (c) Chromatid exchange (cte): Rearrangement as a consequence of breakage and misreunion between two or more chromatids of different chromosome (interchromosomal exchange) or within a chromosome (intrachromosomal exchange).
- (d) Chromosome break (isochromatid break, csb): Same as chromatid break but at the same loci in both sister chromatids. Acentric chromosome fragments are included.
- (e) Chromosome exchange (cse): Chromosomes with multiple centromeres, and chromosome ring.
- (f) Fragmentation (frg): A metaphase containing a large number of gaps and breaks. This aberrant metaphase was scored as one

aberrant cell.

(g) Others (oth): Other structural chromosome aberrations such as multiple aberration.

B) Numerical chromosome aberrations

Only polyploid cell having 3 or more copies of haploid number of chromosomes was scored as a numerical chromosome aberration cell. Since the CHL cells have 25 chromosomes in the modal number, the cell with 37 or more chromosomes was recorded as a polyploid cell.

(6) Statistical analysis

The number of aberrant metaphases and polyploid cells at each dose were statistically compared with those of corresponding solvent controls using a chi-square test.

7) Criteria of a valid test

Conducted cytogenetics tests were considered to be valid if the negative and positive control values met the following criteria:

- (a) The frequencies of the aberrant metaphases in the solvent control groups are within our historical negative control range (mean $\pm 3 \times s.D.$).
- (b) The frequency of the aberrant metaphases in the positive control groups are 10% or more.

8) Evaluation of results

Evaluations for structural and numerical chromosome aberrations were done separately. A test substance was judged negative if there was no significant increase in the frequencies of aberrant metaphases or polyploid cells at any doses. A test substance was judged positive if reproducible and significant increases in the frequencies of aberrant metaphases or polyploid ent is to the blocked in any line in the line in the block of the bloc cells were observed with a dose-related response. Both biological and statistical significance were considered together in a final

5. RESULTS

1) Preliminary growth inhibition test

The results of the preliminary growth inhibition test are summarized in Table 1. Figures 1 to 4 represent the relationship between cell growth and dose levels.

In the 24-hr and 48-hr treatments of the direct method, the doses of HR-001 which showed a reduction of the relative cell growth by 50% or more were 1000 and 500 μ g/ml, respectively. Therefore, the doses of 1000 and 500 μ g/ml were chosen as the highest doses in the 24-hr and 48-hr treatments of the cytogenetics test, respectively.

In the metabolic activation method, no cell growth inhibition effect was observed at the dose of 1000 µg/ml or less, but at 2000 µg/ml or more, their cell growth was inhibited over 50%. Therefore, the dose of 2000 µg/ml was determined to be used as the highest dose in the cytogenetics test with the metabolic activation system.

It was noticed that in the both methods the color of the culture medium was turned to yellow at 500 µg/ml or more, indicating a decline of pH.

2) Cytogenetics test (direct method)

The results of the cytogenetics test by the direct method are

shown in Table 2 (24-hr treatment) and Table 3 (48-hr treatment). The frequency of the aberrant metaphases (excluding gaps) was 0.5% at any doses of 125, 250 and 500 μ g/ml in the 24-hr treatment, showing no significant increases when compared with the concurrent solvent control. The dose of 1000 μ g/ml gave high cytotoxicity to the cells so that chromosome preparations were not obtained from the cultures treated at this dose.

In the 48-hr treatment, the frequencies of the aberrant metaphases were ranging from 0.0% to 1.0%, showing no significant increases when compared with the concurrent solvent control.

There was no increase in the frequencies of polyploid metaphases at any doses of HR-001 in both 24-hr and 48-hr treatments.

It was noticed that in both methods the color of the culture medium was turned to yellow at 500 and 1000 $\mu g/ml$, indicating a decline of pH.

On the other hand, MMC used as a positive control caused a great increase in a frequency of aberrant metaphases. As shown in Appendix 1, the frequencies of aberrant metaphases in the negative controls were consistent with our historical control data. These control results supported the validity of this study.

3) Cytogenetics test (metabolic activation method)

The results of the cytogenetics test by the metabolic

activation method are shown in Table 4 (with S9 mix) and Table 5 (without S9 mix). In the presence of a metabolic activation system, the frequencies of the aberrant metaphases (excluding gaps) were in a range of 0.5% - 1.0%, showing no significant increases when compared with the concurrent solvent control.

In the concurrent control experiment (without S9 mix), the frequencies of the aberrant metaphases were also in a range of 0.5% - 1.0%, showing no significant increases when compared with the solvent control.

The frequencies of polyploid cells did not significantly increase in either presence or absence of S9 mix.

It was noticed that in both treatments (with and without s9 mix) pH of the culture medium of the cultures treated at 500, 1000, and $2000~\mu g/ml$ went down. The dose of $2000~\mu g/ml$ gave high cytotoxicity to the cells so that chromosome preparations were not obtained from the cultures treated at this dose.

On the other hand, B(a)P used as a positive control caused a remarkable increase in the frequency of aberrant metaphases in the presence of S9 mix. As shown in Appendix 1, the frequencies of aberrant metaphase in the negative controls were consistent with our historical control data. These control results supported the validity of this study.

6. CONCLUSION

In the direct and the metabolic activation system, there was not a significant increase in the frequencies of abnormal metaphases with structural chromosome aberrations or polyploid metaphases.

Based on the results obtained, it was concluded that, under the conditions of this study, the test substance HR-001 did not induce chromosome aberrations in Chinese hamster CHL cells with or without the metabolic activation system.

7. REFERENCES

- 1) Koyama H., et al. (1970) A new cell line derived from newborn Chinese hamster lung tissue. Gann, 61: 161 167.
- 2) Ishidate M. Jr., and Odashima S. (1977) Chromosome tests with 134 compounds on Chinese hamster cell in vitro: a screening for chemical carcinogens. Mutation Res., 48: 337 354.
 - 3) Testing guidelines for toxicology studies for medical drugs (1990), The Ministry of Health and Welfare, Japan, Yakuji-Nippo (1990) (in Japanese)
 - 4) Ishidate M. Jr., Sofuni T., Yoshikawa K. (1981) The results of

The december is the first product of the first prod mutagenicity of food additives (No.2). Mutagens and Toxicology,

30

Table 1 Preliminary growth inhibition test

,	<u>Test substance</u> :	HR-001			Eliz Inder El Jan.
	Concentration		Relativ	ve cell growth (%)	0. 2. 12.
	(μg/ml)	Direct method 24 h	Direct method 48 h	Metabolic activation method 6-18 had (1st Exp.) 100 100 100 108 104 97 103 106 112 106	Metabolic acti- vation method 6-18 h ^a (2nd Exp.)
	Solvent control (Hanks)	100	100	CO CO TO CONTROL	Med 100
oce,	3. 9	100	100	oto 0 100 to	inemany
	7.8	97	101,30	9	<u> </u>
	15. 6	100	101	108	
	31. 3	96	110	104	
	62.5	100	601	97	ind
44-1	125	102	99	103	Security -
	250	92	82	106	
	500°	74	46	112	ása
Seria	1000%	22	9	106	100
26 biolis	2000*)		, , , , , , , , , , , , , , , , , , ,	anicotos:	22
With 900	3000 6)	- systemation - 1		- mandersian,	38
sent is I'm entity	4000 b)			**************************************	27
This document is not the document a)	5000°)				25

CHL cells were treated with the test substance for 6 hours in the presence of S9 Mix and then cultured in fresh medium for further 18 hours.

The color of the culture medium was turned to yellow after addition of the test substance solutions. indicating a decline of pH. $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1$

Table 2

94-0143).	ınt		Judge			8000A	; ; ;	women	**	(o+
(IET (Number of aberrant		18	1(0.5)	0(0)0	1 (0.5)	1 0 0	1 0 1(0.5)		50 48 98(49.0)
	Number	metaphases	+3	3(1.5)	0 (0)0	1(0.5)	1 2 3(1.5)	3 1 4(2.0)		51 50 101 (50. 5)
	The state of the s	Others		0 0 0	0 (0)0	0(0)	0(0)	(0)0		10.50
		Pragmen-	tat 10n	0(0)0	0 (0)0	0 0 0	0 0 0	0 (0)	(5)	0 0 0
	aberration	Clircinoscine type	cse	0000	0000	1(0.5)	0(0)0	00 0	Signification of	2(1.0)
	hramosame	Chromos	ess	1(0.5)	0 (0)	0000	0000	0(0)0	Section of	2 3 5(2.5)
ř	Number of chromosome aberrations		cre	0(0)0	0(0)0	0 0 0	000 ŏ	0000	ine ighte	40 330 70(30.5)
		Chromatid	CLU	0(0)	0000	0000	1 0 1(0.5)	1 0 1(0.5)		26 17 43(21.5)
		Gap	70	0 2 2(1,0)	(00)	0(0)	0 2 2(1.0)	2 1 3(1.5)	t.	4 4 8(4.0)
	loid	Judge	Š	nd Sto		es to le pe		1		
.Cu	Polyploid	EK.	20 20 5, 5	000	10.50	10.5)	0 1(0.5)	0 0 0 0		10.50
ar. Lreatmen		index 1.		(6 gg (6 13 8	62 57 (60)	6.2 7.2 (6.7)	64 54 (59)	45 67 (56)		30 35 (33)
Cytogenetics test (direct method, 24-hr treatment)	Number of		1	100 100 Total (Mean)	100 100 Total (Mean)	100 100 Total (Mean)	100 100 Total (Mean)	100 100 Total (Mean)		100 100 Total (Mean)
test (dire	Concentra-	tion (ug/m/)		0	10%	[22]	£2	500°	1000ª b)	0.1
enetics	83	Mix		ľ]			1
Cytog	Time	3	-	24	22	·	77	1		24
Table 2 Cytogenetics Test substance : IR-001	Treatment	: :		Untreated	Solvent control (fanks)		E G			Positive control

Abbreviations : cth, chromatid break ; cte, chromatid exchange ; csb, chromosome break ; cse, chromosome exchange ; + g, including gaps ; - g, excluding gaps ; MK, mitomycin C

a): The color of the culture medium was turned to yellow after addition of the test substance solutions, indicating a decline of pll

 $^{\rm b)}:$ No chromosome preparations hecause of cytotoxicity. $^{\rm c)}:$ Significantly different from the solvent control at p ${\leq}0.001.$

Cytogenetics test (direct method, 48-fm treatment) Table 3

100-111	
substance :	The second secon
lest	

		Judge					: 1	: 1	a
errant		 50	1 8	3 /		:			+
Number of aherrant	metaphases	ĩ	5	000		1001	20.02	1 1 0 0 0	72 80 141 (70. 5)
New	meta	+8	2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000	3(1.5)	20 0 0 0	3 2 2 5(2, 5)	2 3 50 5)	77 70 70 144(72,0)
440000000000000000000000000000000000000	Others		000		000	000	0(0)0	000	2 1 3(1,5)
3	Pragmen-	tation	000	0000	0 0 0	0000	0(0)0	0000	3(1.5)
aberrat ion.	Chromosome type	cse	000	000	0 0 0	0 0 0	0 1 1(0.5)	0,000	6(3.00)
hromosome	Chromoso	csp	0 0	0 0 0	0000	0000	000	000	2 3 5(2.5)
Number of chromosome aberrations	tid type	cte	0000	0000	0(0)	0000	0000	0(0)	53 46 99(49.5)
	Chromat id	ctb	2(1.0)	0(0)	000	- (G)	10.5	1 1 2(1.0)	44 42 88(43.0)
	Cap	23	1 0 1(0.5)	000	2 3(1.5)	10.53	2 1 3(1.5)	3(1.5)	6 5 11(5.5)
ploid	Judge	A	nd is it	origo, es				: 1	1
Polyp	(1)	60 00	10.5	10.5	0(0)0	0(0)	0 2 2(L.0)	0 (0)	2 0 2(1.0)
	index	3	2000 2000 2000 2000 2000 2000 2000 200	33. 34. 34.	(30)	34 24 (29)	34 27 (31)	25 25 (30)	28 23 (26)
Number of		o X	100 100 Total (Mean)	100 100 Total (Mean)	100 100 Total (Mean)	100 100 Total (Mean)	100 100 Total Ofean)	100 100 Total Okean)	100 100 Total (Mean)
Concentra-	tion (,,o/mA	איז לא ווומ	0	10%	62.5	<u>8</u> 3	250	500 ₄	0.1
83			ĺ).		į.
Time	3		48	48	***************************************	8	2		48
Treatment	No.		Untreated control	Solvent control (Banks)		S		- Control of the Cont	Positive control (MAC)

Abbreviations : ctb, chromatid break ; cte, chromasome break ; cse, chromosome exchange ; -1-g, including gaps ; -g, excluding gaps ;

a); The color of the culture medium was turned to yellow after addition of the test substance solutions, indicating a decline of pil

 $^{\text{bl}}$: Significantly different from the solvent control at p $\leq\!\!0.001$

Judge

Table 4 Cytogenetics test (metabolic activation method, 6-hr treatment, +59 Mix) ue po

Test substance : HR-001

⊊			ļ			1:		i	
Number of aberran	metaplinses	60	1(0.5)	10,5)	2(1.0)	0 2 2(0.0)	0 1 10.5)		7 (38.5)
edin N	metap	50	2 2 4(2.0)	3(1.5)	2(1.0)	1 3 4(2.0)	3(1.5)	1	39 46 30 30 50
	Others		0(0)0	0((0))0	0(0)0	0(0)0	0(0)0	10 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	0(0)0
	Pragmen-	tation	0(0)0	0000	0(0)0	0 (0)0	0(0)		0(0)
aberrations	Chranosome type	cse	0(0)0	0 0 0	0000	0(0)	0(0)0	c scoot	0 1(0.5)
hranosame	Chromos	qs)	(0)0 0	0000	0000	0(0)	000	iectioning	4(2.0)
Number of chromosome aberrations	p.	cte	0(0)	0 0 0	0(0)	000	0000	ine ight	8888
	Chromat	ctp	1 0 1(0.5)	10.50	20.02	0 2 2(1.0)	0 4 1(0.5)		20 22 42(2), 0)
	Gap	50	1 2 3(1.5)	1 2 3(1.5)	0000	2(1.0)	2(1.0)	1	4 2 6(3.0)
oid	Judge		And is to	ing is	5000		1		
Polyploid	(18)	00	000	0000	0 0 0	0000	1(0.5)		0(0)
	index	3	(450 (400 (400	5.1 7.4 (6.3)	66 68 (67)	57 54 (56)	7.2 (7.2)		34 42 (38)
Number of	metaphases	000	100 100 Total (Mean)	100 100 Total (Mean)	100 100 Total (Mean)	100 100 Total (Mean)	100 100 Total (Wean)	:	100 100 100 10ta I (Mean)
Concentra-	tion	CHES HES	0	10%	230	200 ₀	(a)000I	2000t c)	40
83	Mix		+	+					4
Line	3	3	6 9	(6 a)		e C	>		(°0)
Treatment			Untreated	Solvent control (llanks)	The latest state of the same s	HR-ANI			Positive control [B(a)P]

Abbreviations : ctb. chromatid break ; cte. chromatid exchange ; csb. chromosome break ; cse. chromosome exchange ; + g, including gaps ; - g, excluding gaps ; B(a)P, benzo(a)pyrene

+

b): The color of the culture medium was furmed to yellow after addition of the test substance solutions, indicating a decline of pll
 c): No chromosome preparations because of cytotoxicity.
 d): Significantly different from the solvent control at p ≤0.001.

a): OIL cells were treated with the test substance for 6 hours in the presence of S9 Mix and then cultured in fresh medium for further 18 dours.

Table 5

91-0143)	ınt	-	Judge	į.					5 6 8	
(IET (Number of aberrant	rases	ය	1 2 3(1.5)	0 0 0	2 0 2(1.0)	1 0 5	10.5)	*: *: *: *: *:	1(0.5)
	Number	metaphases	† 58	2 2 4(2.0)	2(1.0)	3 4(2.0)	2(1.0)	2 0 2(1.0)		10.5)
		Others		0(0)0	0(0)	0(0)0	0(0)0	0 0 0	, , , , , , , , , , , , , , , , , , ,	0(0)
	S	Pragmen-	tation	0(0)0	0000	0(0)0	0 (0)0	(0)0	S	0(0)0
	Number of chromosome aberrations	Chromosome type	cse	0 (0)0	0 0 0	0 0 0	0(0)0	0000	idition of	0(0)0
)	shramosame	Chromos	3	0000	0000	0000	0(0)	000	ofection of	0(0)
	Number of (tid type	250	1(0.5)	0(0)0	0000	000	0000	on ight	0(0)0
		Chromatid	or o	0 2 2(1.0)	0(0)	2(1.0)	1(0.5)	1 0 1(0.5)	0 1 1 1 1 1 1 1	1(0.5)
		Gap	٥	1 0 01(0.5)	2(L.2)	2 1 3(1.5)	1(0.5)	1(0.5)	† † † † † † † † † † † † † † † † † † †	0(0)
-S3 Mix)	Polyploid	Judge	2	16/2 90 10/2 1/10	Cillion to	is colle b			1 1 4 6 1 1 1	ľ
i	16%	(5)		0000	2(F) 0 2(F) 0	0(0)	(0)0 0	10.5)		1(0,5)
trol, 6-hr trea	Mitolic	index (%)	3	(200 (200 (300 (300)	50 50 (51)	47 55 (51)	48 50 (49)	49 65 (57)		5.0 4.3 (4.7)
Cytogenetics test (concurrent control, 6-hr treatment, ance : IR-CO1	Number of	metaphases		100 100 Total (Mean)	100 100 Total Ovean)	100 100 Total (Mean)	100 100 Total Okean)	100 100 Total (Mean)		100 100 Total (Mean)
test (concur	Concentra-	tion (μg/mD		0	10%	250	200	n0001	2000r c)	40
netics	83	XIW.		1	1		1			
Cytoger	Time	3		(e 9)	(P g)		ŝ	>		6 a)
Table 5 Cytogenetics Test substance : IR-CO1	Treatment	*******************	1.4	control	Solvent control (fanks)		<u> </u>			Positive control [B(a)P]

; F.g., excluding gaps ; Abbreviations : cth. chromatid break ; cte. chromatid exchange ; csb, chromosome break ; cse, chromosome exchange ; + g, including gaps ; B(a)P, benzo(a)pyrene

a): CML cells were treated with the test substance for 6 hours in the absence of S9 Mix and then cultured in fresh medium for further 18 Mours.

^{b)}: The color of culture medium was turned to yellow after addition of the test substance solutions, indicating a decline of pll columnosame preparations because of cytotoxicity.

35

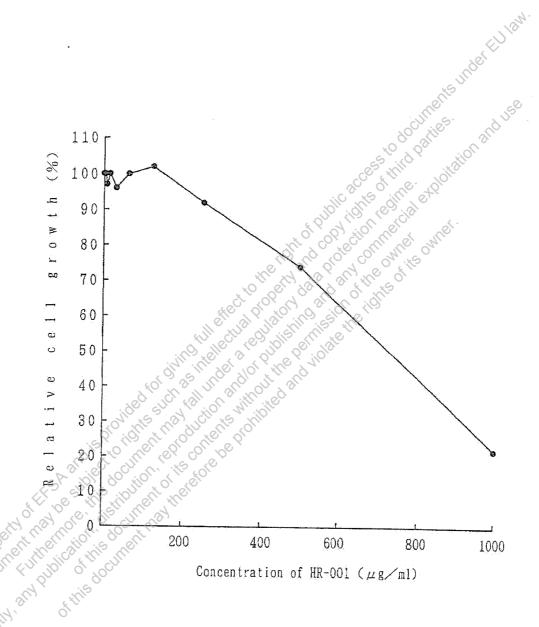
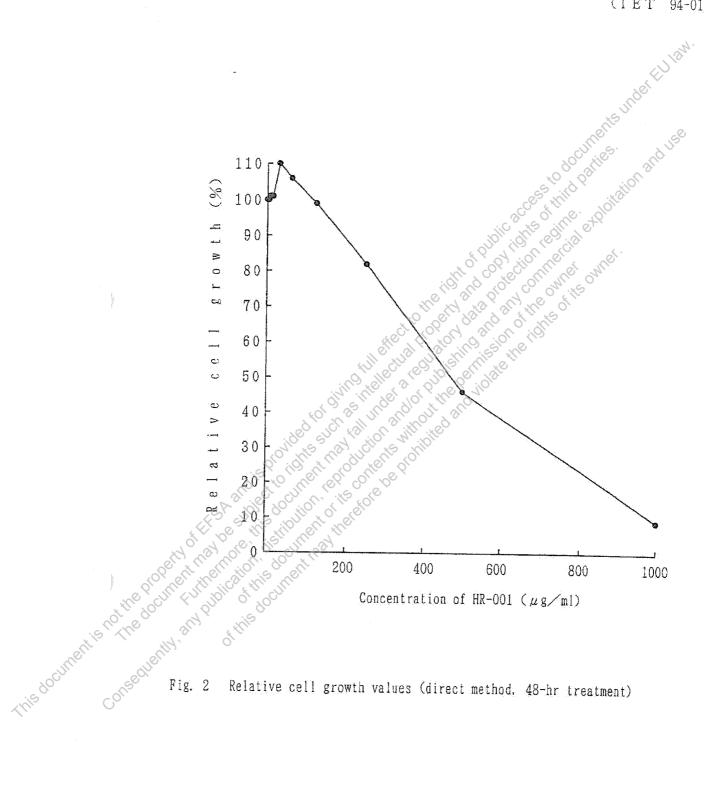



Fig. 1 Relative cell growth values (direct method, 24-hr treatment)

Relative cell growth values (direct method, 48-hr treatment)

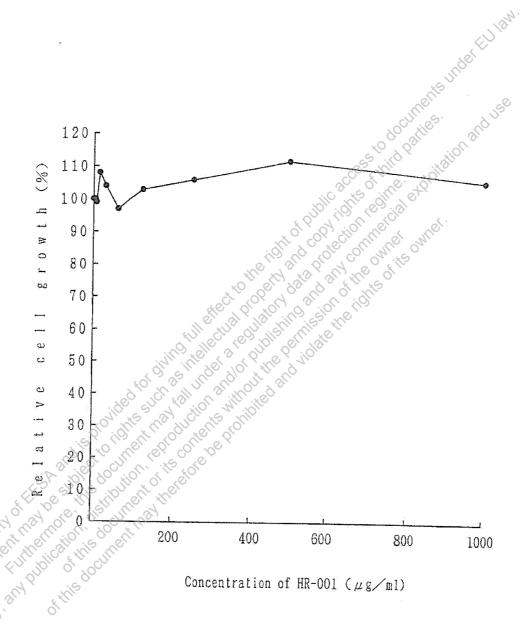
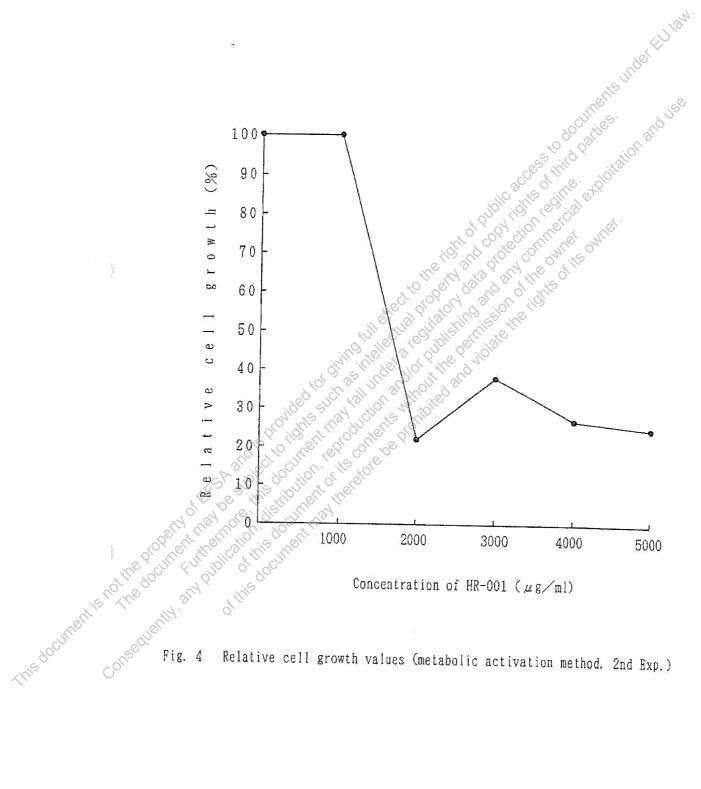



Fig. 3 Relative cell growth values (metabolic activation method, 1st Exp.)

Relative cell growth values (metabolic activation method, 2nd Exp.)

(1 E T 94-0143)	_
Appendix 1 Laboratory historical control values at - in vitro cytogenetics test -	

	of the state of th	2, 16		
Treatment	ant Collins in the Co	,, 0, ,	Cells with structural chromosome aberrations (%) (Mean ± S.D.)	Polyploid cells (%)
ANALY TO THE PROPERTY OF THE P	Little Comments		50	(medii - o. b.)
Direct method	Untreated control	1 7 12 + 0.93	0.50 ± 0.59	0.37 ± 0.56
24 h	Solvent control (DMSO 0.5%)	4.32 ± 70.75	0.61 ± 0.55	0.43 ± 0.52
Direct method	Untreated control	1. 18 # 1.22	0.50 ± 0.66	0.48 ± 0.51
48 h	Solvent control (DMSO 0.5%)	1.18 ± 0.86	5 (1) (1) (2) (4) (6) (4) (6) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	0.47 ± 0.49
Metabolic activation method(450)	Untreated control	1.38 ± 1.22	0.52 ± 0.6	0.48 ± 0.70
6-18 h	Solvent control (DMSO 0.5%)	1.41 ± 0.98	0.727 \$ 0.67 11 10 00 0	0.43 ± 0.38
Abbreviations: The values ar	Abbreviations: + g, including gaps; - g, The values are based on 39 cytogenetics	etics	.00	1988 to December, 1994.