RCC - CCR STUDY NUMBER 1061403

SALMONELLA TYPHIMURIUM AND ESCHERICHIA COLI REVERSE MUTATION ASSAY

WITH

Glyphosate technical (NUP-05067)

FINAL REPORT

STUDY COMPLETION DATE: MARCH 16, 2007

STATEMENT OF NO DATA CONFIDENTIALITY CLAIM

No claim of confidentiality is made for any information contained in this study on the basis of it falling within the scope of FIFRA Sect. 10 (d)(1)(A), (B) or (C).

Louided to diving the legital property and protection to the strike access to do the child protection to the child protection ct to rights such as intellectual property and copyrights of third and or publishing and any connection and or publishing and or publishing and any connection and or publishing and any connection and or publishing and or publ this document near all under a legislation by the permission of the owner of the contract of t Company Company Agent Title Signature Date

These data are considered to be CONFIDENTIAL for all purposes other than compliance with FIFRA Section 10. Submission of these data in compliance with FIFRA does not constitute a waiver of any right to confidentiality, which may exist under any statue or in any other country.

The above statement supersedes any other markings of confidentially which may appear elsewhere in the report.

2 CONTENTS

1 STATEMENT OF NO DATA CONFIDENTIALITY CLAIM 2 CONTENTS 3 PREFACE 3.1 General 3.2 Responsibilities 3.3 Schedule 3.4 Project Staff Signatures 3.5 Good Laboratory Practice 3.6 Guidelines 3.7 Archiving 3.8 Deviations to Study Plan 4 STATEMENT OF COMPLIANCE 5 STATEMENT OF QUALITY ASSURANCE UNIT 6 SUMMARY OF RESULTS 6.1 Conclusion 7 OBJECTIVE 7.1 Aims of the Study 7.2 Reasons for the Study 8 MATERIALS AND METHODS 8.1 Test Item 8.2 Controls 8.3 Test System 8.4 Mammalian Microsomal Fraction S9 Mix 8.5 Pre-Experiment for Toxicity 8.6 Dose Selection 8.7 Experimental Performance 8.8 Data Recording 8.9 Acceptability of the Assay 8.10 Evaluation of Results 11 Biometry 9 DISCUSSION OF RESULTS 12.1 Summary of Results Pre-Experiment I 20 12.2 Summary of Results Pre-Experiment I 21 13 HISTORICAL CONTROL DATA 14 ANNEX II TABLES OF RESULTS (8 PAGES) 15 ANNEY II CADEY OF GIJP CERTIFICATE OF ANALYSIS		1 10
6.1 Conclusion 9 7 OBJECTIVE 10 7.1 Aims of the Study 10 7.2 Reasons for the Study 10 8 MATERIALS AND METHODS 11 8.1 Test Item 11 8.2 Controls 12 8.3 Test System 13 8.4 Mammalian Microsomal Fraction S9 Mix 15 8.5 Pre-Experiment for Toxicity 16 8.6 Dose Selection 16 8.7 Experimental Performance 16 8.8 Data Recording 17 8.9 Acceptability of the Assay 17 8.10 Evaluation of Results 17 8.11 Biometry 17 9 DISCUSSION OF RESULTS 18 10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	1 STATEMENT OF NO DATA CONFIDENTIALITY CLAIM	
6.1 Conclusion 9 7 OBJECTIVE 10 7.1 Aims of the Study 10 7.2 Reasons for the Study 10 8 MATERIALS AND METHODS 11 8.1 Test Item 11 8.2 Controls 12 8.3 Test System 13 8.4 Mammalian Microsomal Fraction S9 Mix 15 8.5 Pre-Experiment for Toxicity 16 8.6 Dose Selection 16 8.7 Experimental Performance 16 8.8 Data Recording 17 8.9 Acceptability of the Assay 17 8.10 Evaluation of Results 17 8.11 Biometry 17 9 DISCUSSION OF RESULTS 18 10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	2 CONTENTS	JIU 3
6.1 Conclusion 9 7 OBJECTIVE 10 7.1 Aims of the Study 10 7.2 Reasons for the Study 10 8 MATERIALS AND METHODS 11 8.1 Test Item 11 8.2 Controls 12 8.3 Test System 13 8.4 Mammalian Microsomal Fraction S9 Mix 15 8.5 Pre-Experiment for Toxicity 16 8.6 Dose Selection 16 8.7 Experimental Performance 16 8.8 Data Recording 17 8.9 Acceptability of the Assay 17 8.10 Evaluation of Results 17 8.11 Biometry 17 9 DISCUSSION OF RESULTS 18 10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	3 PREFACE	9
6.1 Conclusion 9 7 OBJECTIVE 10 7.1 Aims of the Study 10 7.2 Reasons for the Study 10 8 MATERIALS AND METHODS 11 8.1 Test Item 11 8.2 Controls 12 8.3 Test System 13 8.4 Mammalian Microsomal Fraction S9 Mix 15 8.5 Pre-Experiment for Toxicity 16 8.6 Dose Selection 16 8.7 Experimental Performance 16 8.8 Data Recording 17 8.9 Acceptability of the Assay 17 8.10 Evaluation of Results 17 8.11 Biometry 17 9 DISCUSSION OF RESULTS 18 10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	3.1 General	1504
6.1 Conclusion 9 7 OBJECTIVE 10 7.1 Aims of the Study 10 7.2 Reasons for the Study 10 8 MATERIALS AND METHODS 11 8.1 Test Item 11 8.2 Controls 12 8.3 Test System 13 8.4 Mammalian Microsomal Fraction S9 Mix 15 8.5 Pre-Experiment for Toxicity 16 8.6 Dose Selection 16 8.7 Experimental Performance 16 8.8 Data Recording 17 8.9 Acceptability of the Assay 17 8.10 Evaluation of Results 17 8.11 Biometry 17 9 DISCUSSION OF RESULTS 18 10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	3.2 Responsibilities	and 4
6.1 Conclusion 9 7 OBJECTIVE 10 7.1 Aims of the Study 10 7.2 Reasons for the Study 10 8 MATERIALS AND METHODS 11 8.1 Test Item 11 8.2 Controls 12 8.3 Test System 13 8.4 Mammalian Microsomal Fraction S9 Mix 15 8.5 Pre-Experiment for Toxicity 16 8.6 Dose Selection 16 8.7 Experimental Performance 16 8.8 Data Recording 17 8.9 Acceptability of the Assay 17 8.10 Evaluation of Results 17 8.11 Biometry 17 9 DISCUSSION OF RESULTS 18 10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	3.3 Schedule	7000
6.1 Conclusion 9 7 OBJECTIVE 10 7.1 Aims of the Study 10 7.2 Reasons for the Study 10 8 MATERIALS AND METHODS 11 8.1 Test Item 11 8.2 Controls 12 8.3 Test System 13 8.4 Mammalian Microsomal Fraction S9 Mix 15 8.5 Pre-Experiment for Toxicity 16 8.6 Dose Selection 16 8.7 Experimental Performance 16 8.8 Data Recording 17 8.9 Acceptability of the Assay 17 8.10 Evaluation of Results 17 8.11 Biometry 17 9 DISCUSSION OF RESULTS 18 10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	3.4 Project Staff Signatures	igit. o
6.1 Conclusion 9 7 OBJECTIVE 10 7.1 Aims of the Study 10 7.2 Reasons for the Study 10 8 MATERIALS AND METHODS 11 8.1 Test Item 11 8.2 Controls 12 8.3 Test System 13 8.4 Mammalian Microsomal Fraction S9 Mix 15 8.5 Pre-Experiment for Toxicity 16 8.6 Dose Selection 16 8.7 Experimental Performance 16 8.8 Data Recording 17 8.9 Acceptability of the Assay 17 8.10 Evaluation of Results 17 8.11 Biometry 17 9 DISCUSSION OF RESULTS 18 10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	3.5 Good Laboratory Practice) 5
6.1 Conclusion 9 7 OBJECTIVE 10 7.1 Aims of the Study 10 7.2 Reasons for the Study 10 8 MATERIALS AND METHODS 11 8.1 Test Item 11 8.2 Controls 12 8.3 Test System 13 8.4 Mammalian Microsomal Fraction S9 Mix 15 8.5 Pre-Experiment for Toxicity 16 8.6 Dose Selection 16 8.7 Experimental Performance 16 8.8 Data Recording 17 8.9 Acceptability of the Assay 17 8.10 Evaluation of Results 17 8.11 Biometry 17 9 DISCUSSION OF RESULTS 18 10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	3.6 Guidelines	5
6.1 Conclusion 9 7 OBJECTIVE 10 7.1 Aims of the Study 10 7.2 Reasons for the Study 10 8 MATERIALS AND METHODS 11 8.1 Test Item 11 8.2 Controls 12 8.3 Test System 13 8.4 Mammalian Microsomal Fraction S9 Mix 15 8.5 Pre-Experiment for Toxicity 16 8.6 Dose Selection 16 8.7 Experimental Performance 16 8.8 Data Recording 17 8.9 Acceptability of the Assay 17 8.10 Evaluation of Results 17 8.11 Biometry 17 9 DISCUSSION OF RESULTS 18 10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	3.7 Archiving	§. 6
6.1 Conclusion 9 7 OBJECTIVE 10 7.1 Aims of the Study 10 7.2 Reasons for the Study 10 8 MATERIALS AND METHODS 11 8.1 Test Item 11 8.2 Controls 12 8.3 Test System 13 8.4 Mammalian Microsomal Fraction S9 Mix 15 8.5 Pre-Experiment for Toxicity 16 8.6 Dose Selection 16 8.7 Experimental Performance 16 8.8 Data Recording 17 8.9 Acceptability of the Assay 17 8.10 Evaluation of Results 17 8.11 Biometry 17 9 DISCUSSION OF RESULTS 18 10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	3.8 Deviations to Study Plan	- O
6.1 Conclusion 9 7 OBJECTIVE 10 7.1 Aims of the Study 10 7.2 Reasons for the Study 10 8 MATERIALS AND METHODS 11 8.1 Test Item 11 8.2 Controls 12 8.3 Test System 13 8.4 Mammalian Microsomal Fraction S9 Mix 15 8.5 Pre-Experiment for Toxicity 16 8.6 Dose Selection 16 8.7 Experimental Performance 16 8.8 Data Recording 17 8.9 Acceptability of the Assay 17 8.10 Evaluation of Results 17 8.11 Biometry 17 9 DISCUSSION OF RESULTS 18 10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	4 STATEMENT OF COMPLIANCE	<i>'</i>
10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	5 STATEMENT OF QUALITY ASSURANCE UNIT	0
10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	6 SUMMARY OF RESULTS	9
10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	6.1 Conclusion	10
10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	7.4 Aires of the Cturbs	10
10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	7.1 Aims of the Study	10
10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	7.2 Reasons for the Study	10
10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	0 WATERIALS AND METIODS	11
10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	9.2 Controls	12
10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	0.2 Controls	12
10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	8.4 Mammalian Microsomal Fraction S0 Mix	15
10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	8.5 Pro Evperiment for Toyleity	16
10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	9.6 Deer Solorion	16
10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	9.7 Evnerimental Derformance	16
10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	9.8 Data Pocordina	17
10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	8.0 Acceptability of the Assay	17
10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	8.40 Evaluation of Results	17
10 REFERENCES 19 11 DISTRIBUTION OF THE REPORT 19 12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	8.11 Riometry	17
10 REFERENCES 11 DISTRIBUTION OF THE REPORT 12 SUMMARY OF RESULTS 12.1 Summary of Results Pre-Experiment/Experiment I 12.2 Summary of Results Experiment II 13 HISTORICAL CONTROL DATA 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 19 19 10 11 12 13 14 15 16 17 17 17 18 19 19 19 10 10 11 11 12 12 13 14 15 16 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	9 DISCUSSION OF RESULTS	18
11 DISTRIBUTION OF THE REPORT 12 SUMMARY OF RESULTS 12.1 Summary of Results Pre-Experiment/Experiment I 13 HISTORICAL CONTROL DATA 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 19 20 21 22 23		
12 SUMMARY OF RESULTS 20 12.1 Summary of Results Pre-Experiment/Experiment I 20 12.2 Summary of Results Experiment II 21 13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	O^*	
12.1Summary of Results Pre-Experiment/Experiment I2012.2Summary of Results Experiment II2113HISTORICAL CONTROL DATA2214ANNEX I: TABLES OF RESULTS (8 PAGES)23		
12.2 Summary of Results Experiment II2113 HISTORICAL CONTROL DATA2214 ANNEX I: TABLES OF RESULTS (8 PAGES)23		
13 HISTORICAL CONTROL DATA 22 14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23		
14 ANNEX I: TABLES OF RESULTS (8 PAGES) 23	·	
	15 ANNEX II: COPY OF GLP CERTIFICATE OF ANALYSIS	32

3 PREFACE

3.1 General

Salmonella typhimurium and Escherichia coli Title:

Reverse Mutation Assay with Glyphosate technical

(NUP-05067)

Nufarm Asia Sdn Bhd Sponsor:

No. 9A & B, Jalan USJ 2475

47630 Subang Jaya, Selangor, D.E.

Malaysia

Dr. Study Monitor:

Nufarm Asia Sdn Bhd

RCC Test Facility:

Cytotest Cell Research GmbH (RCC-CCR)

In den Leppsteinswiesen 19

64380 Rossdorf

Germany

Contracting Institute:

RCCLtd 4452 Itingen Switzerland

Reference Number:

3.2 Responsibilities

Dipl. Biol. Study Director:

Deputy Study Director: Dr.

Management: Dr.

Head of Quality Assurance Unit:

3.3 Schedule

January 03, 2007 Date of the Study Plan:

16, 2007 Experimental Starting Date: January Experimental Completion Date: 25, 2007 January

Date of Draft Report: February 23, 2007

Date of Final Report: March 16, 2007

3.7 Archiving

RCC Cytotest Cell Research GmbH will archive the following data for 15 years:

Consequently and the left first firs Raw data, study plan, final report, and a sample of the test item.

3.5 Good Laboratory Practice

The study was performed in compliance with:

"Chemikaliengesetz" (Chemicals Act) of the Federal Republic of Germany, "Anhang 1" (Annex 1) dated July 25, 1994 ("BGBI. I 1994", pp. 1703), last revision dated June 27, 2002.

"OECD Principles of Good Laboratory Practice", as revised in 1997 [C(97)186/Final].

These procedures are consistent with Good Laboratory Practice Regulations specified by regulatory authorities throughout the European Community, the United States (EPA and FDA), and Japan (MHW, MAFF, and MITI).

3.6 Guidelines

This study followed the procedures indicated by the following internationally accepted guidelines and recommendations:

The OECD Guidelines for Testing of Chemicals No. 471: "Bacterial Reverse Mutation Test", adopted July 21, 1997 referenced as Method B13/14 of Commission Directive 92/69/EEC (which constitutes Annex V of Council Directive 67/548/EEC).

Japanese Ministry of Agriculture, Forestry and Fisheries (JMAFF), Guidelines for Study Results, Reverse mutation studies. Guideline No.2-1-19-1. >Notification 12NohSan No. 8147, as partly revised in 16-Shouan-9260, on March 16 2005. English translation by ACIS on October 17, 2005.

4 STATEMENT OF COMPLIANCE

Study Number:

1061403

Test Item:

Glyphosate technical (NUP-05067)

Study Director:

Dipl. Biol.

Title:

Salmonella typhimurium and Escherichia coli Reverse Mutation Assay with Glyphosate technical

(NUP-05067)

This study performed in the test facility of RCC Cytotest Cell Research GmbH was conducted in compliance with Good Laboratory Practice Regulations:

"Chemikaliengesetz" (Chemicals Act) of the Federal Republic of Germany, "Anhang 1" (Annex 1) dated July 25, 1994 ("BGBI, 1994", pp. 1703), last revision dated June 27, 2002.

"OECD Principles of Good Laboratory Practice" as revised in 1997 [C(97)186/Final]

There were no circumstances that may have affected the quality or integrity of the study.

RCC - CCR

Dipl. Biol.

Date: March 16, 2007

5 STATEMENT OF QUALITY ASSURANCE UNIT

Study Number:

1061403

Test Item:

Glyphosate technical (NUP-05067)

Study Director:

Dipl. Biol.

Title:

Salmonella typhimurium and Escherichia coli Reverse Mutation Assay with Glyphosate technical

(NUP-05067)

The general facilities and activities of RCC Cytotest Cell Research GmbH are inspected periodically and the results are reported to the responsible person and the management.

Study procedures were inspected periodically. The study plan and this report were audited by the Quality Assurance Unit. The dates are given below.

Phases and Dates o	f QAU Inspections/ Audits	Dates of Reports to the Study Director and to Management
Study Plan (Draft):	January 03, 2007	January 03, 2007
Study Plan:	January 04, 2007	
Study Inspection:	January 16, 2007	January 16, 2007
Draft Report:	March 09, 2007	March 09, 2007

This statement is to confirm that the present final report reflects the raw data.

Head of Quality Assurance Unit

Date: March 16, 2007

6 SUMMARY OF RESULTS

This study was performed to investigate the potential of Glyphosate technical (NUP-05067) to induce gene mutations in the plate incorporation test (experiment I) and the pre-incubation test (experiment II) using the Salmonella typhimurium strains TA 1535, TA 1537, TA 98, and TA 100, and the Escherichia coli strain WP2 uvrA.

The assay was performed in two independent experiments both with and without liver microsomal activation. Each concentration, including the controls, was tested in triplicate. The test item was tested at the following concentrations:

Pre-Experiment/Experiment I:

3; 10; 33; 100; 333; 1000; 2500; and 5000 µg/plate

Experiment II:

33; 100; 333; 1000; 2500; and 5000 µg/plate

The plates incubated with the test item showed normal background growth in experiment I and II with and without metabolic activation. Only in experiment I in strain WP2 uvrA reduced background growth was observed at 5000 µg/plate in the absence of metabolic activation.

No toxic effects, evident as a reduction in the number of revertants, occurred in the test groups with and without metabolic activation. Minor toxic effects occurred at 5000 μ g/plate in strain WP2 uvrA in the absence of metabolic activation in experiment I and II.

No substantial increase in revertant colony numbers of any of the five tester strains was observed following treatment with Glyphosate technical (NUP-05067) at any dose level, neither in the presence nor absence of metabolic activation (S9 mix). There was also no tendency of higher mutation rates with increasing concentrations in the range below the generally acknowledged border of biological relevance.

Appropriate reference mutagens were used as positive controls and showed a distinct increase of induced revertant colonies.

6.1 Conclusion

In conclusion, it can be stated that during the described mutagenicity test and under the experimental conditions reported, the test item did not induce gene mutations by base pair changes or frameshifts in the genome of the strains used.

Therefore, Glyphosate technical (NUP-05067) is considered to be non-mutagenic in this Salmonella typhimurium and Escherichia coli reverse mutation assay.

7 OBJECTIVE

7.1 Aims of the Study

The experiments were performed to assess the potential of the test item to induce gene mutations by means of two independent Salmonella typhimurium and Escherichia coli reverse mutation assays. Experiment I was performed as a plate incorporation assay. Since a negative result was obtained in this experiment, experiment II was performed as a pre-incubation assay.

7.2 Reasons for the Study

The most widely used assays for detecting gene mutations are those using bacteria (3). They are relatively simple and rapid to perform, and give reliable data on the ability of an agent to interact with DNA and produce mutations.

Reverse mutation assays determine the frequency with which an agent reverses or suppresses the effect of the forward mutation. The genetic target presented to an agent is therefore small, specific and selective. Several bacterial strains, or a single strain with multiple markers are necessary to overcome the effects of mutagen specificity. The reversion of bacteria from growth-dependence on a particular amino acid to growth in the absence of that amino acid (reversion from auxotrophy to prototrophy) is the most widely used marker.

The Salmonella typhimurium histidine (his) and the E. coli tryptophan (trp) reversion system measures his \rightarrow his and trp \rightarrow trp reversions, respectively. The S. typhimurium and Escherichia coli strains are constructed to differentiate between base pair (TA 1535, TA 100, and WP2 uvrA) and frameshift (TA 1537, TA 98) mutations.

According to the direct plate incorporation or the pre-incubation method the bacteria are exposed to the test item with and without metabolic activation and plated on selective medium. After a suitable period of incubation, revertant colonies are counted.

To establish a dose response effect at least 6 dose levels with adequately spaced intervals were tested. The maximum dose level was 5000 µg/plate.

To validate the test, reference mutagens were tested in parallel to the test item.

8 MATERIALS AND METHODS

8.1 Test Item

Internal RCC-CCR Test Item Number: S 693811

The test item and the information concerning the test item were provided by the sponsor.

Identity:

Glyphosate technical (NUP-05067)

Batch No.:

0609-1

Aggregate state at

room temperature:

Crystalline powder

Colour:

White

Purity:

95.0 %

Solubility

10.9 g/L in water

Stability in water (sterile):

30 days at room temperature

Storage:

Room temperature

Expiration Date:

August 15, 2008

On the day of the experiment, the test item Glyphosate technical (NUP-05067) was dissolved in deionised water, the stock solution was neutralized with 5N sodium hydroxide. The solvent was chosen because of its solubility properties (5).

No precipitation of the test item occurred up to the highest investigated dose.

8.2 Controls

8.2.1 The Negative Controls

Concurrent untreated and solvent controls will be performed.

8.2.2 The Positive Control Substances

Without metabolic activation

Strains:

TA 1535, TA 100

Name:

Sodium azide, NaN₃

Supplier:

July Julie district of third Daties. SERVA, D-69042 Heidelberg

Lot Number: Catalogue No.: 14760

30175

Purity:

at least 99 %

Expiration Date:

August 2007

Dissolved in: Concentration: agua deionised

Strains:

Name:

Jata protection regime exploitation and use TA 1537, TA 98 4-nitro-o-phenylene-diamine, 4-NOPD

Supplier:

SIGMA, D-82041 Deisenhofen

Lot Number:

416324/1

Catalogue No.:

> 9504 > 99.9 % April 20

Purity:

Expiration Date:

Dissolved in:

39.9 % April 2009 DMSO (** DMSO (MERCK, D-64293 Darmstadt, purity > 99 %)

Concentration:

10 µg/plate in TA 98, 50 µg/plate in TA 1537

Strain:

Name:

Supplier

νν μ2 uvrA methyl methane sulfonate, MMS Merck-Schuchardt, D-85662 μ 074Κ3720 Merck-Schuchardt, D-85662 Hohenbrunn

Lot Number: Catalogue No.:

820775

uate:

Concentration:

With mo Purity:

> 99.0 % October 2007

aqua deionised 3 µL/plate

With metabolic activation

Strains:

TA 1535, TA 1537, TA 98, TA 100, WP2 uvrA

Name:

2-aminoanthracene, 2-AA SIGMA, D-82041 Deisenhofen

Supplier: Lot Number:

S11804-252

Catalogue No.:

A 1381

Purity: **Expiration Date:** 97.5 %

November 2007

Dissolved in: Concentration: DMSO (MERCK, D-64293 Darmstadt, purity > 99 %) 2.5 µg/plate (TA 1535, TA 1537, TA 98, TA 100),

10 µg/plate (WP2 uvrA)

The stability of the positive control substances in solution is unknown but a mutagenic response in the expected range will be sufficient evidence of biological stability.

8.3 Test System

8.3.1 Characterisation of the Salmonella typhimurium Strains and E. coli Strain

The histidine dependent strains are derived from S. typhimurium strain LT2 through a mutation in the histidine locus. Additionally due to the "deep rough" (rfa-minus) mutation they possess a faulty lipopolysaccharide envelope which enables substances to penetrate the cell wall more easily. A further mutation causes a reduction in the activity of an excision repair system. The latter alteration includes mutational processes in the nitrate reductase and biotin genes produced in a UV-sensitive area of the gene named "uvrB-minus". In the strains TA 98 and TA 100 the R-factor plasmid pKM 101 carries the ampicillin resistance marker (6).

Strain WP2 (4) and its derivatives all carry the same defect in one of the genes for tryptophan biosynthesis. Tryptophan-independent (Trp⁺) mutants (revertants) can arise either by a base change at the site of the original alteration or by a base change elsewhere in the chromosome so that the original defect is suppressed. This second possibility can occur in several different ways so that the system seems capable of detecting all types of mutagen which substitute one base for another. Additionally, the uvrA derivative is deficient in the DNA repair process (excision repair damage). Such a repair-deficient strain may be more readily mutated by agents.

When summarised the mutations of the TA strains and the E. coli strain, used in this study can be described as follows:

100	Salmonella typhimu	rium
Strains S	Genotype	Type of mutations indicated
TA 1537	his C 3076; rfa; uvrB:	frame shift mutations
TA 98	his D 3052; rfa; uvrB;R-factor	s) H
TA 1535	his G 46; rfa ; uvrB :	base-pair substitutions
TA 100	his G 46; rfa; uvrB;R-factor	11 11
. 40 1/4 1/10 1/10 1/10 1/10 1/10 1/10 1/	Escherichia col	
WP2 uvrA	trp ⁻ ; uvrA ⁻ :	base-pair substitutions and others

Regular checking of the properties of the strains regarding the membrane permeability and ampicillin resistance as well as spontaneous mutation rates is performed in RCC Cytotest Cell Research according to B. Ames et al. (1) and D. Maron and B. Ames (6). In this way it was ensured that the experimental conditions set down by Ames were fulfilled.

The bacterial strains TA 1535, TA 1537, TA 98, TA 100, and WP2 uvrA were obtained from Trinova Biochem GmbH (35394 Gießen, Germany).

8.3.2 Storage

The strain cultures were stored as stock cultures in ampoules with nutrient broth + 5 % DMSO (MERCK, D-64293 Darmstadt) in liquid nitrogen.

8.3.3 Precultures

From the thawed ampoules of the strains 0.5 mL suspension was transferred into 250 mL Erlenmeyer flasks containing 20 mL nutrient medium. A solution of 20 μ L ampicillin (25 μ g/mL) was added to the strains TA 98 and TA 100. This nutrient medium contains per litre:

8 g Merck Nutrient Broth (MERCK, D-64293 Darmstadt)

5 g NaCl (MERCK, D-64293 Darmstadt)

The bacterial cultures were incubated in a shaking water bath for 4 hours at 37° C.

8.3.4 Selective Agar

The plates with the selective agar were obtained from E. Merck, D-64293 Darmstadt (Catalogue No.:1.13496.00.1; Lot No.:62355).

8.3.5 Overlay Agar

The overlay agar contains per litre:

for Salmonella strains:

for Escherichia coli:

6.0 g MERCK Agar Agar*

6.0 g MERCK Agar Agar*

6.0 g NaCl*

6.0 g NaCl*

10.5 mg L-Histidine×HCl×H2O*

2.5 mg Tryptophan*

12.2 mg Biotin*

* (MERCK, D-64293 Darmstadt)

Sterilisations were performed at 121° C in an autoclave.

8.4 Mammalian Microsomal Fraction S9 Mix

The bacteria used in this assay do not possess the enzyme systems which, in mammals, are known to convert promutagens into active DNA damaging metabolites. In order to overcome this major drawback an exogenous metabolic system is added in form of mammalian microsome enzyme activation mixture.

8.4.1 S9 (Preparation by RCC - CCR)

Phenobarbital/β-Naphthoflavone induced rat liver S9 is used as the metabolic activation system. The S9 is prepared from 8 - 12 weeks old male Wistar Hanlbm rats, weight approx. 220 - 320 g induced by applications of 80 mg/kg b.w. Phenobarbital i.p. (Desitin; D-22335 Hamburg) and β-Naphthoflavone p.o. (Aldrich, D-89555 Steinheim) each on three consecutive days. The livers are prepared 24 hours after the last treatment. The S9 fractions are produced by dilution of the liver homogenate with a KCl solution (1+3) followed by centrifugation at 9000 g. Aliquots of the supernatant are frozen and stored in ampoules at -80° C. Small numbers of the ampoules can be kept at -20°C for up to one week. Each batch of S9 mix is routinely tested with 2-aminoanthracene as well as benzo(a)pyrene.

The protein concentration in the S9 preparation was 38.1 mg/mL (lot no. R 031106) in both experiments.

8.4.2 S9 Mix

Before the experiment an appropriate quantity of S9 supernatant was thawed and mixed with S9 co-factor solution. The amount of S9 supernatant was 10% v/v in the S9 mix. Cofactors are added to the S9 mix to reach the following concentrations in the S9 mix:

8 mM MgCl₂ 33 mM KCl 5 mM Glucose-6-phosphate 5 mM NADP

in 100 mM sodium-ortho-phosphate-buffer, pH 7.4.

During the experiment the S9 mix was stored in an ice bath. The S9 mix preparation was performed according to Ames et al.(1).

8.5 Pre-Experiment for Toxicity

To evaluate the toxicity of the test item a pre-experiment was performed with strains TA 1535, TA 1537, TA 98, TA 100, and WP2 uvrA. Eight concentrations were tested for toxicity and mutation induction with three plates each. The experimental conditions in this pre-experiment were the same as described below for the experiment I (plate incorporation test).

Toxicity of the test item results in a reduction in the number of spontaneous revertants or a clearing of the bacterial background lawn.

The pre-experiment is reported as main experiment I, if the following criteria are met:

Evaluable plates (>0 colonies) at five concentrations or more in all strains used.

8.6 Dose Selection

In the pre-experiment the concentration range of the test item was $3-5000 \mu g/plate$. The pre-experiment is reported as experiment I since no relevant toxic effects were observed and $5000 \mu g/plate$ were chosen as maximal concentration.

The concentration range included two logarithmic decades. The following concentrations were tested in experiment II:

33; 100; 333; 1000; 2500; and 5000 µg/plate

8.7 Experimental Performance

For each strain and dose level including the controls, three plates were used.

The following materials were mixed in a test tube and poured onto the selective agar plates:

- 100 µL Test solution at each dose level, solvent (negative control) or reference mutagen solution (positive control),
- 500 μL S9 mix (for test with metabolic activation) or S9 mix substitution buffer (for test without metabolic activation),
- 100 µL Bacteria suspension (cf. test system, pre-culture of the strains),
- 2000 µL Overlay agar

In the pre-incubation assay 100 μ L test solution, 500 μ L S9 mix / S9 mix substitution buffer and 100 μ L bacterial suspension were mixed in a test tube and shaken at 37° C for 60 minutes. After pre-incubation 2.0 mL overlay agar (45° C) was added to each tube. The mixture was poured on selective agar plates.

After solidification the plates were incubated upside down for at least 48 hours at 37° C in the dark (2).

8.8 Data Recording

The colonies were counted using the Petri Viewer Mk2 (Perceptive Instruments Ltd, Suffolk CB 7BN, UK) with the software program Ames Study Manager. The counter was connected to an IBM AT compatible PC with printer to print out the individual values and the means from the plates for each concentration together with standard deviations and enhancement factors as compared to the spontaneous reversion rates (see tables of results).

8.9 Acceptability of the Assay

The Salmonella typhimurium and Escherichia coli reverse mutation assay is considered acceptable if it meets the following criteria:

- regular background growth in the negative and solvent control
- the spontaneous reversion rates in the negative and solvent control are in the range of our historical data
- the positive control substances should produce a significant increase in mutant colony frequencies

8.10 Evaluation of Results

A test item is considered as a mutagen if a biologically relevant increase in the number of revertants exceeding the threshold of twice (strains TA 98, TA 100, and WP2 uvrA) or thrice (strains TA 1535 and TA 1537) the colony count of the corresponding solvent control is observed (3).

A dose dependent increase is considered biologically relevant if the threshold is exceeded at more than one concentration (2).

An increase exceeding the threshold at only one concentration is judged as biologically relevant if reproduced in an independent second experiment.

A dose dependent increase in the number of revertant colonies below the threshold is regarded as an indication of a mutagenic potential if reproduced in an independent second experiment. However, whenever the colony counts remain within the historical range of negative and solvent controls such an increase is not considered biologically relevant.

8.11 Biometry

According to the OECD guideline 471, a statistical analysis of the data is not mandatory.

9 DISCUSSION OF RESULTS

The test item Glyphosate technical (NUP-05067) was assessed for its potential to induce gene mutations in the plate incorporation test (experiment I) and the pre-incubation test (experiment II) using Salmonella typhimurium strains TA 1535, TA 1537, TA 98, and TA 100, and the Escherichia coli strain WP2 uvrA.

The assay was performed in two independent experiments both with and without liver microsomal activation. Each concentration and the controls were tested in triplicate. The test item was tested at the following concentrations:

Pre-Experiment/Experiment I:

3; 10; 33; 100; 333; 1000; 2500; and 5000 µg/plate

Experiment II:

33; 100; 333; 1000; 2500; and 5000 µg/plate

The plates incubated with the test item showed normal background growth in experiment I and II with and without metabolic activation. Only in experiment I in strain WP2 uvrA reduced background growth was observed at 5000 µg/plate in the absence of metabolic activation.

No toxic effects, evident as a reduction in the number of revertants, occurred in the test groups with and without metabolic activation. Minor toxic effects occurred at 5000 μ g/plate in strain WP2 uvrA in the absence of metabolic activation in experiment I and II.

No substantial increase in revertant colony numbers of any of the five tester strains was observed following treatment with Glyphosate technical (NUP-05067) at any dose level, neither in the presence nor absence of metabolic activation (S9 mix). There was also no tendency of higher mutation rates with increasing concentrations in the range below the generally acknowledged border of biological relevance.

Appropriate reference mutagens were used as positive controls. They showed a distinct increase of induced revertant colonies.

In conclusion, it can be stated that during the described mutagenicity test and under the experimental conditions reported, the test item did not induce gene mutations by base pair changes or frameshifts in the genome of the strains used.

10 REFERENCES

- Ames, B.N., J. McCann, and E. Yamasaki (1977)
 Methods for detecting carcinogens and mutagens with the Salmonella/mammalian
 microsome mutagenicity test
 In: B.J. Kilbey et al. (Eds.)"Handbook of Mutagenicity Test Procedures" Elsevier,
 Amsterdam, 1-17
- de Serres F.J. and M.D. Shelby (1979)
 Recommendations on data production and analysis using the Salmonella/microsome
 mutagenicity assay
 Mutation Res. 64, 159-165
- 3. Hollstein, M., J. McCann, F.A. Angelosanto and W.W. Nichols (1979) Short-term tests for carcinogens and mutagens Mutation Res. 65, 133-226
- Green, M.H.L. and W.J. Muriel (1976)
 Mutagen Testing Using TRP⁺ Reversion in Escherichia Coli Mutation. Res. 38, 3- 32
- Maron D.M., J. Katzenellenbogen and B.N. Ames, (1981)
 Compatibility of organic solvents with the Salmonella/Microsome Test Mutation Res. 88, 343-350
- Maron D.M., Ames, B.N. (1983)
 Revised methods for the Salmonella mutagenicity test
 Mutation Res. 113, 173-215

11 DISTRIBUTION OF THE REPORT

Sponsor

 $2 \times (copy)$

Contacting Institute

1 x (electronic copy (pdf-file)

Study Director

1 × (original)

12 SUMMARY OF RESULTS

12.1 Summary of Results Pre-Experiment/Experiment I

Study Name: 1061403 Experiment: 1061403 VV Plate Assay Conditions:

Study Code: RCC-CCR 1061403 Date Plated: 16/01/2007 Date Counted: 19/01/2007

Assay Cond	litions:				2010	Coxies	67
Metabolic Activation	Test Group	Dose Level (µg/plate)	Revertant C	Colony Counts	s (Mean ±SD)	ocolijes	on and
			<u>TA 1535</u>	<u>TA 1537</u>	TA 98	<u>TA 100</u>	WP2 uvrA
Without Activation	Deionised water Untreated Glyphosate technical (NUP-05067)	3 µg 10 µg 33 µg 100 µg 333 µg 1000 µg 2500 µg	20 ± 6 19 ± 8 19 ± 4 20 ± 6 21 ± 2 20 ± 7 12 ± 3 20 ± 8 18 ± 5	10 ± 4 11 ± 4 9 ± 3 10 ± 2 11 ± 3 12 ± 4 14 ± 2 8 ± 2 9 ± 2	24 ± 5 33 ± 6 28 ± 6 28 ± 4 26 ± 10 25 ± 2 25 ± 5 28 ± 7 24 ± 3 21 ± 7	127 ± 8 139 ± 16 126 ± 7 136 ± 11 128 ± 16 131 ± 8 118 ± 10 119 ± 15 135 ± 16 116 ± 3	53 ± 3 53 ± 10 44 ± 7 51 ± 10 51 ± 6 54 ± 4 52 ± 5 43 ± 4 22 ± 6
	NaN3 4-NOPD 4-NOPD MMS	5000 µg 10 µg 10 µg 50 µg 3.0 µL 3 µg 10 µg	17±6 1991±41	9±2 9±1 102±9 15±2 20±4 15±5 16±0 14±3	436 ± 43	2196 ± 97	1304 ± 54
With Activation		100 µg 333 µg 1000 µg	21 ± 2 21 ± 5 23 ± 4 22 ± 3 20 ± 2 16 ± 7 24 ± 4 21 ± 9 19 ± 2 22 ± 3 345 ± 11	15 ± 2 20 ± 4 15 ± 5 16 ± 0 14 ± 3 12 ± 4 16 ± 1 19 ± 3 15 ± 4 18 ± 3 208 ± 9	34 ± 4 41 ± 7 33 ± 3 41 ± 9 34 ± 8 32 ± 7 35 ± 7 38 ± 2 34 ± 2 28 ± 6 1459 ± 133	138 ± 3 135 ± 2 127 ± 7 139 ± 4 148 ± 9 148 ± 1 121 ± 6 144 ± 8 137 ± 9 112 ± 8 2023 ± 40	73 ± 4 72 ± 10 69 ± 14 77 ± 2 74 ± 10 71 ± 14 76 ± 11 67 ± 4 60 ± 9 55 ± 7 322 ± 16

Key to Positive Controls

sodium azide

2-AA 4-NOPD MMS

NaN3

2-aminoanthracene 4-nitro-o-phenylene-diamine methyl methane sulfonate

Key to Plate Postfix Codes

R

Reduced background growth

12.2Summary of Results Experiment II

Study Name: 1061403 Experiment: 1061403 HV2 Pre

Assay Conditions:

Study Code: RCC-CCR 1061403

Date Plated: 22/01/2007 Date Counted: 25/01/2007

Metabolic <u>Activation</u>	Test <u>Group</u>	Dose Level (µg/plate)	Revertant C	Colony Counts	(Mean ±SD)	- Merits	, se
			<u>TA 1535</u>	<u>TA 1537</u>	TA 98	TA 100	WP2 uvrA
Without Activation	Deionised water Untreated Glyphosate technical (NUP-05067)	33 µg 100 µg 333 µg 1000 µg 2500 µg 5000 µg	16 ± 7 12 ± 2 19 ± 4 16 ± 6 15 ± 5 13 ± 4 19 ± 3 10 ± 3	8±2 11±4 13±4 14±1 11±4 10±4 10±1 9±2	32 ± 3 28 ± 7 28 ± 6 26 ± 3 30 ± 4	150 ± 2 124 ± 27 131 ± 8 144 ± 7 147 ± 3 148 ± 8 135 ± 3 105 ± 13	58 ± 5 52 ± 3 54 ± 2 54 ± 11 49 ± 12 41 ± 7 30 ± 4 24 ± 11
	NaN3 4-NOPD 4-NOPD MMS	10 µg 10 µg 10 µg 50 µg 3.0 µL	2045 ± 99	105 ± 5	356 ± 28	2246 ± 39	705 ± 40
With Activation	Deionised water Untreated Glyphosate technical (NUP-05067) 2-AA 2-AA itive Controls	33 µg 100 µg 333 µg 1000 µg 2500 µg 5000 µg 2.5 µg 10.0 µg	28 ± 2 21 ± 2 24 ± 4 22 ± 8 23 ± 9 21 ± 2 19 ± 8 21 ± 2 335 ± 12	18 ± 3 24 ± 2 21 ± 4 19 ± 1 18 ± 4 19 ± 4 14 ± 4 19 ± 5 229 ± 45	41 ± 4	164 ± 2 153 ± 16 167 ± 14 161 ± 11 166 ± 19 154 ± 32 153 ± 11 146 ± 34 2331 ± 280	66 ± 10 68 ± 17 68 ± 18 62 ± 4 73 ± 9 67 ± 7 49 ± 9 49 ± 5 287 ± 18
Key to Posi	itive Controls	JU. Life Colo	~				
4-NOPD 4	sodium azide 2-aminoanthracene 4-nitro-o-phenylene methyl methane su	e-diamine					

13 HISTORICAL CONTROL DATA

These data represent the laboratory's historical control data from May 2005 until June 2006 representing approx. 200 experiments (WP2 uvrA the historical data are based on approx. 100 experiments).

Strain			with	out S9 mix		900 sti	with S9	nix	
		Mean	SD	Min	Max	Mean	SD	Min	Max
	Solvent control	20.8	4.7	9	35	24.7	5.9	7	43
TA 1535	Negative control	20.4	4.4	11	31 (3)	24,2	5.5	10	38
	Positive control	1422.0	464.7	781	4900	332.0	95.3	107	695
	Solvent control	11.2	3.7	55 ^(O) 35	28 28	16.2	5.0	6	36
TA1537	Negative control	11.6	4.0	o Hally	28 28 425	47.1	5.4	7	34
	Positive control	99.8	32.5	530	425	276.8	132.6	59	746
	Solvent control	28.1	6.4	c ⁰⁾ 15, S	49 60	37.9	7.4	20	57
TA 98	Negative control	30.2	6.6	2 15 S	ii ⁰ 60	39.0	7.5	18	64
	Positive control	439.0	155.2	176	1818	1839.4	898.6	407	4891
	Solvent control	130.7	20.8	(il ⁰ 87	197	147.0	25.5	84	255
TA 100	Negative control	138.2	21.6	86	216	150.1	24.2	96	214
	Positive control	2083.1	281.3	616	2872	2372.9	958.4	417	5230
	Solvent control	55.8	7.2	31	74	63.9	9.1	34	84
WP2uvrA	Negative control	55.9	8.6	36	76	65.6	10.4	33	91
Dell'ille	Positive control	991.0	522.9	249	1810	319.4	84.8	211	930

Mean = mean value of revertants/plate

SD = standard deviation

Min = minimal value/Max = maximal value

Ages) Ages) Ages) Ages Age

Consecutified the first first

Study Code: RCC-CCR 1061403 Date Plated: 16/01/2007 Date Counted: 19/01/2007

Without metabolic activation

Strain	Compound	Dose level per plate	Mean revertants	Standard Deviation	Ratio treated /	Individual revertant colony counts
		per plate	per plate	20,100	solvent	- CE - SC - SC
						23, 16, 19 17, 16, 26 21, 19, 22 12, 23, 24 10, 10, 16 14, 29, 16
TA 1535	Glyphosate	3 µg	19.3	3.5	1.0	23, 16, 19
	technical (NUP-	10 µg	19.7	5.5	1.0	17, 16, 26
	05067)	33 µg	20.7	1.5	1.1	21, 19, 22
		100 µg	19.7	6.7	1.0	12, 23, 24
		333 µg	12.0	3.5		10, 10, 16
		1000 µg	19.7	8.1	1.0	14, 29, 16 17, 14, 24
		2500 µg	18.3	5.1	0.9	21, 20, 10
		5000 µg	17.0	6.1	0.9	26, 16, 17
	Deionised water		19.7	5.5	, 70, ×6,	17, 28, 12
	Untreated Control		19.0	8.2	10. 00.	10, 20, 12
				-40° 41	2000	10, 6, 12
TA 1537	Glyphosate	3 µg	9.3	3.4	0.9	10, 8, 12
	technical (NUP-	10 µg	10.0	2.0	7.0	10, 9, 15
	05067)	33 µg	11:3	3.20	1.10	10, 17, 10
		100 µg	12.3	3.2 4.0 1.5	1.4	12, 14, 15
		333 µg	13.7	(02/10/1	0.8	10, 6, 9
		1000 µg	8.3	18 0	110.0	10, 9, 7
		2500 ug	8.7	1.5	0.9	8, 9, 10
		5000 µg	40.0	3,6	0.8	14, 7, 9
	Deionised water	60 M. K.	9.0 10.0 11.3	4.2		16, 8, 10
	Untreated Control	100	10,000	110		
TA 98	Glyphosate	3 µg	28.0	6.2	1.2	35, 26, 23
17.00		10 µg	27.7	4.2	1.2	29, 23, 31
	05067)	33 µg	25.7	10.4	1.1	29, 14, 34
	CP 1018 400	33 µg 100 µg 333 µg 1000 µg 2500 µg	25.0	1.7	1.1	26, 23, 26
,	(S) 6) 15 . W	333 µg	25.3	4.9	1.1	22, 23, 31
4	C. 60 HU. ALIS	1000 µg	27.7	7.0	1.2	27, 21, 35
"70,	of to, gis ci	2500 µg	24.3	3.2	1.0	28, 22, 23
-0/2, 4	10, 40	5000 µg	20.7	6.7	0.9	15, 28, 19
:00° cnt	Glyphosate technical (NUP-05067) Deionised water		23.7	5.0		23, 19, 29
e Property of the	technical (NUP- 05067) Deionised water Untreated Control		32.7	6.4		28, 40, 30
E TA 100 AND	0, 20,					
TA 100	Glyphosate	3 µg	126.3	6.7	1.0	119, 128, 132
9,	technical (NUP-	10 µg	136.3	11.0	1.1	149, 130, 130
JIA,	05067)	33 µg	128.3	15.6	1.0	145, 114, 126
101.		100 µg	131.0	7.9	1.0	122, 134, 137
60/		333 µg	117.7	10.3	0.9	115, 129, 109
<u> </u>		1000 µg	119.0	15.4	0.9	136, 115, 106
		2500 µg	134.7	16.2	1.1	144, 144, 116
		5000 µg	116.0	2.6	0.9	119, 114, 115
	Deionised water		127.3	8.0		119, 135, 128
	Untreated Control		139.0	15.6		121, 147, 149

Study Code: RCC-CCR 1061403 Date Plated: 16/01/2007 Date Counted: 19/01/2007

Without metabolic activation

Sitian Compound Dose level per plate Partial previous Partial colony counts					•••••			- 80
Per plate Per		Otroia	Compound	Dose level	Mean	Standard	Ratio	Individual revertant
WP2 uvrA Glyphosate technical (NUP-		Strain	Compound			Deviation		colony counts
2500 μg 43.3 4.2 0.8 40, 48, 42 5000 μg 22.0 5.6 0.4 17 R, 21 R, 28 R Deionised water 53.0 3.5 55, 55, 49 Untreated Control 53.3 9.7 64, 51, 45 TA 1535 NaN3 10 μg 1991.0 40.5 101.2 1992, 2031, 1950 TA 1537 4 NORD 50 μg 102.0 9.0 10.2 93, 111, 102							solvent	
2500 μg 43.3 4.2 0.8 40, 48, 42 5000 μg 22.0 5.6 0.4 17 R, 21 R, 28 R Deionised water 53.0 3.5 55, 55, 49 Untreated Control 53.3 9.7 64, 51, 45 TA 1535 NaN3 10 μg 1991.0 40.5 101.2 1992, 2031, 1950 TA 1537 4 NORD 50 μg 102.0 9.0 10.2 93, 111, 102								
2500 μg 43.3 4.2 0.8 40, 48, 42 5000 μg 22.0 5.6 0.4 17 R, 21 R, 28 R Deionised water 53.0 3.5 55, 55, 49 Untreated Control 53.3 9.7 64, 51, 45 TA 1535 NaN3 10 μg 1991.0 40.5 101.2 1992, 2031, 1950 TA 1537 4 NORD 50 μg 102.0 9.0 10.2 93, 111, 102		W/P2 m/r∆	Glyphosate	3 µg	44.0	6.9	0.8	40, 40, 52
2500 μg 43.3 4.2 0.8 40, 48, 42 5000 μg 22.0 5.6 0.4 17 R, 21 R, 28 R Deionised water 53.0 3.5 55, 55, 49 Untreated Control 53.3 9.7 64, 51, 45 TA 1535 NaN3 10 μg 1991.0 40.5 101.2 1992, 2031, 1950 TA 1537 4 NORD 50 μg 102.0 9.0 10.2 93, 111, 102		WI Z GVIA			53.7	<i>5</i> .5	1.0	59, 54, 48
2500 μg 43.3 4.2 0.8 40, 48, 42 5000 μg 22.0 5.6 0.4 17 R, 21 R, 28 R Deionised water 53.0 3.5 55, 55, 49 Untreated Control 53.3 9.7 64, 51, 45 TA 1535 NaN3 10 μg 1991.0 40.5 101.2 1992, 2031, 1950 TA 1537 4 NORD 50 μg 102.0 9.0 10.2 93, 111, 102							1.0	62, 45, 45
2500 μg 43.3 4.2 0.8 40, 48, 42 5000 μg 22.0 5.6 0.4 17 R, 21 R, 28 R Deionised water 53.0 3.5 55, 55, 49 Untreated Control 53.3 9.7 64, 51, 45 TA 1535 NaN3 10 μg 1991.0 40.5 101.2 1992, 2031, 1950 TA 1537 4 NORD 50 μg 102.0 9.0 10.2 93, 111, 102			03001)			<i>5</i> .5	1.0	48, 47, 57
2500 μg 43.3 4.2 0.8 40, 48, 42 5000 μg 22.0 5.6 0.4 17 R, 21 R, 28 R Deionised water 53.0 3.5 55, 55, 49 Untreated Control 53.3 9.7 64, 51, 45 TA 1535 NaN3 10 μg 1991.0 40.5 101.2 1992, 2031, 1950 TA 1537 4 NORD 50 μg 102.0 9.0 10.2 93, 111, 102							1.0	54, 58, 50
2500 μg 43.3 4.2 0.8 40, 48, 42 5000 μg 22.0 5.6 0.4 17 R, 21 R, 28 R Deionised water 53.0 3.5 55, 55, 49 Untreated Control 53.3 9.7 64, 51, 45 TA 1535 NaN3 10 μg 1991.0 40.5 101.2 1992, 2031, 1950 TA 1537 4 NORD 50 μg 102.0 9.0 10.2 93, 111, 102							1.0.0	57, 48, 52
5000 μg 22.0 5.6 0.4 17 R, 21 R, 28 R Deionised water 53.0 3.5 55, 55, 49 Untreated Control 53.3 9.7 64, 51, 45 TA 1535 NaN3 10 μg 1991.0 40.5 101.2 1992, 2031, 1950 TA 1537 4 NORD 50 μg 102.0 9.0 10.2 93, 111, 102								40 48 42
TA 1535 NaN3 10 μg 1991.0 40.5 101.2 1992, 2031, 1950								17 R. 21 R. 28 R
TA 1535 NaN3 10 μg 1991.0 40.5 101.2 1992, 2031, 1950				5000 pg			0, 6,	55, 55, 49
TA 1535 NaN3 10 μg 1991.0 40.5 101.2 1992, 2031, 1950							, you re	64 51 45
TA 1535 NaN3 10 μg 1991.0 40.5 101.2 1992, 2031, 1950			Untreated Control		53.3		200 (O)	- 64,01,00
TA 1527 1-NODD 5010 1020 300 10.2 300 11, 102					 		0. 0.	200 1050
TA 1527 1-NODD 5010 1020 300 10.2 300 11, 102		TA 1535	NaN3	10 µg		40.5	101.2	
TA 98 4-NOPD 10 µg 436.0 43.2 10.4 445, 474, 389 TA 100 NaN3 10 µg 2195.7 97.0 17.2 2259, 2084, 2244 WP2 uvr MMS 3.0 µL 1933.7 54.1 24.6 1343, 1326, 1242 Key to Positive Controls NaN3 sodium azide 4-NOPD 4-nitro-o-phenylen-diaming methyl methane sulfonate MMS methyl methane sulfonate		TA 1537	4-NOPD	50 µg	102.0	. OnU .\	10.2	93, 111, 102
TA 100		TA 98	4-NOPD	10 µg	436.0	43.20	18.40	445, 474, 389
Key to Positive Controls NaN3 4-NOPD MMS Sodium azide 4-nitro-o-phenylene-diamine methyl methane sulfonate MERITARIA MARIA		TA 100	NaN3	10 µg	2195.7	97.0	17.2	2259, 2084, 2244
Key to Positive Controls NaN3 A-NOPD Antiro-o-phenylene-dlamine methyl methane sulfonate MM/S Key to Plate Positix Codes R Reduced background growth Reduced background growth		WP2 uvrA	MMS	3.0 µL	1303.7	54.4	24.6	1343, 1326, 1242
Key to Positive Controls NaN3 A-NOPD A-NICO-phenylene-diamine methyl methane sulfonate MMS Reduced background growth	3			711	0 10 10	. 000	10,0	
NaN3 4-NOPD MMS sodium azide 4-nitro-o-phenylene-diamine methyl methane sulfonate R Reduced background growth		Key to Positive	Controls	dil	10,961	101 11/10	91.	
is document is not the document. And the document had been document. The document is not the document. The document had been d		4-NOPD 4-t MMS me	nitro-o-phenylene-diami ethyl methane sulfonate		allions in	Ohibited		
is document is not the document the place of this document has been been as a consequent of the document of th			EFSA all ject och	nion, like	ejoje			
is document is not the document of this document of the docume	~	openty of	Lughore, dierr	in way				
is document is not he consequently, and to of this consequently, and to of this		" the bronks	Tight of 90chu					
is document is a true consequently of the cons	<	0,00	y' "Vie					
ijs document consequentity	·.e,	41, 21,0	Of s.					
is docume Consedue.	olls	"HIN"						
ie for Course	ille	We.						
iego. Cours	10C)	ce.						
	. 60~	~~						
		0,						
	ilis (01,						
	ils (
	ilis (
	Jib	301,						
		.gr,						
		, ,						
	ije (, ,						
		, ,						
		, ,						
		, or ,						

NaN3	sodium azide
4-NOPD	4-nitro-o-phenylene-diamine
A ARAC	mothyl mothana sulfonate

Study Code: RCC-CCR 1061403 Date Plated: 16/01/2007 Date Counted: 19/01/2007

With metabolic activation

Strain	Compound	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts
						22, 19, 27 21, 26, 20 20, 19, 22 24, 13, 12 29, 21, 23 12, 30, 22
TA 1535	Glyphosate	3 µд	22.7	4.0	1.1	22, 19, 27 21, 26, 20
	technical (NUP-	10 µg	22.3	3.2	1.0	21, 26, 20 20, 19, 22
	05067)	33 µg	20.3	1.5	1.0	20, 49, 22
		100 µg	16.3	6.7	0.8	29, 21, 23
		333 µg	24.3	4.2	1.1 2	12, 30, 22
		1000 µg	21.3	9.0	1.00	21, 17, 20
		2500 µg	19.3	2.1	0.9	24, 22, 19
		5000 µg	21.7	2.5	6 1.67	21, 20, 23
	Deionised water		21.3	1.5	, CO , CO	20, 17, 27
	Untreated Control		21.3	5.1	100 10°	20, 11,27
				100 24	10 10 m	15, 19, 10
TA 1537	Glyphosate	3 µg	14.7	4.5	1.00	
	technical (NUP-	10 µg	16.0	0.0	~~~~	10, 10, 10
	05067)	33 µg	13.7	3.2	0.90	10, 15, 16 10, 10, 17
		100 µg	12.3	0 4.0	0.8	
		333 µg	16.0	3.2 4.0 1.0 3.5	1.00	17, 15, 16 15, 21, 21
		1000 µg	19.0	Que of	110	15, 21, 21
		2500 µg	15.3	3.5	1.0	12, 19, 15
		5000 µg	18.3	3.5	1.2	22, 17, 16
	Deionised water	9,101,6	15.3	1.5 4.0		15, 17, 14 20, 24, 16
	Untreated Control		20.0	4:0		20, 24, 10
TA 98	Glyphosate technical (NUP-05067)	3 110	32.7	2.5	1.0	35, 30, 33
	technical (NUP-	210.40	40.7	8.7	1.2	31, 48, 43
	05067)	33 µg	34.0	7.5	1.0	41, 26, 35
	C300110. 100 70C.	100 ua	31.7	6.7	0.9	35, 24, 36
	KS' SUD'S W	333 µg	35.0	7.0	1.0	40, 38, 27
ς,	El De Hustip	1000 µg	38.0	2.0	1.1	40, 38, 36
,0	, of is, 912 "	2500 µg	34.3	1.5	1.0	33, 34, 36
	40, 40	5000 µg	28.0	6.2	0.8	35, 23, 26
OP Chi	Deionised water		33.7	4.2		29, 37, 35
Olivery of	Deionised water Untreated Control		41.3	6.7		47, 43, 34
11/2 CC7, E	7/2 0, 700					
TA 100	Glyphosate	3 µg	127.0	6.6	0.9	126, 134, 121
The st.	technical (NUP-	10 µg	139.0	4.4	1.0	134, 141, 142
· Klis	05067)	33 µg	148.0	8.7	1.1	142, 144, 158
,eili		100 µg	148.0	1.0	1.1	149, 148, 147
TA 100 AT TO TA 100 AT THE PROPERTY OF THE PRO		333 µg	120.7	6.4	0.9	118, 128, 116
500		1000 µg	144.3	8.3	1.0	147, 135, 151
2),		2500 µg	137.0	9.2	1.0	129, 147, 135
		5000 µg	111.7	8.1	0.8	121, 107, 107
	Deionised water		138.3	2.9		140, 140, 135
	Untreated Control		135.0	2.0		137, 133, 135

Study Code: RCC-CCR 1061403 Date Plated: 16/01/2007

Date Counted: 19/01/2007

With metabolic activation

	Strain	Compound	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts	
·	WP2 uvrA	Glyphosate technical (NUP- 05067)	3 µg 10 µg 33 µg 100 µg 333 µg 1000 µg 2500 µg 5000 µg	69.3 77.3 74.3 70.7 76.3 67.3 60.3 55.0	13.8 1.5 9.7 14.3 11.2 4.2 9.1 6.9	0.9 0.8 0.8	85, 64, 59 79, 76, 77 72, 66, 85 74, 83, 55 64, 79, 86 60, 72, 64 64, 50, 67 59, 59, 47	>
		Deionised water Untreated Control	0000 pg	73.0 71.7	3.6 9.7	0,006,	59, 59, 47 74, 76, 69 74, 80, 61	
	TA 1535 TA 1537 TA 98 TA 100 WP2 uvrA	2-AA 2-AA	2.5 µg 2.5 µg 2.5 µg 2.5 µg 10.0 µg	345.0 208.0	10.5	43.3 14.6	355, 334, 346 206, 200, 218 1523, 1548, 1307	
	Key to Positive	Controls	ivil)	civile del	10, 6 the	0101		
This document is no	the property of	2-AA 2-AA Controls minoanthracene	ed silch, of the straight of t	Salte le Control de la Control	ith of the desired the second			

Study Code: RCC-CCR 1061403 Date Plated: 22/01/2007 Date Counted: 25/01/2007

Without metabolic activation

Strain	Compound	Dose level per plate	Mean revertants	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts
			per plate		SOIVER	No S
					4.0	22 45 40
TA 1535	Glyphosate	33 µg	18.7	3.5	1.2	22, 15, 19
	technical (NUP-	100 µg	15.7	6.0	1.0	15, 22, 10
	05067)	333 µg	15.3	5.0	1.0	22, 15, 19 15, 22, 10 16, 20, 10 8, 15, 15
		1000 µg	12.7	4.0	0.8	8, 15, 15
		2500 µg	19.0	2.6	1.2	21, 20, 16
		5000 µg	10.3	2.5	0.7	10, 13, 8
	Deionised water		15.7	7.1	JIP i	22, 17, 8
	Untreated Control		12.3	2.1	26 M.	13, 14, 10
				<u> </u>	- COY	Cr. Sept. Sept.
TA 1537	Glyphosate	33 µg	13.3	3.5	0 1.70	10, 17, 13
	technical (NUP-	100 µg	14.0	£0	1.8	14, 15, 13
	05067)	333 µg	10.7	3.8	1.40	8, 15, 9
		1000 µg	9.7	4.0		6, 14, 9
		2500 µg	9.7	0.6	01.30	10, 9, 10
		5000 µg	8.7	S 7,5 \	37 1	1 0, 7, 9
	Deionised water		(1)7.70	0.6 1.5 2.3 4.2	eimigie	9, 9, 5
	Untreated Control	2:	11.3	4.2	0.70	16, 10, 8
		idi	10, 01	101 4 100	71,	
TA 98	Glyphosate	33 µg	28.0	6.0	0.9	28, 22, 34
	technical (NUP-	100 µg	26.3	2.5	0.8	29, 26, 24
	05067)	333 µg	30.0	4.4	0.9	28, 35, 27
	.01/	1000 µg	30.3	4.2	0.9	27, 35, 29
	0,000	2500 µg	24.3	2.5	0.8	24, 27, 22
	1,8 10	5000 µg	24.7	8.6	0.8	23, 34, 17
	Deionised water	111. 10:18	32.3	3.1		33, 35, 29
	Untreated Control	10/11/10/11/2	28.3	6 .5		28, 35, 22
	(2) 60 .6	2000				
TA 100	Glyphosate	33 µg	131.0	7.8	0.9	122, 136, 135
	tachnical (NDP-	100 µg	144.3	7.0	1.0	151, 137, 145
(2)	(05067)	333 µg	146.7	2.9	1.0	150, 145, 145
OP chi	technical (NUP- 05067)	1000 µg	147.7	8.1	1.0	157, 144, 142
by We	141, 110,0° 11,12,114,	2500 µg	134.7	2.5	0.9	132, 135, 137
5 , Cn, E,	110, 0, 10co	5000 μg	105.0	13.5	0.7	116, 90, 109
a property	Deionised water	. 0	150.3	1.5		150, 152, 149
?. · · · · · ·	Untreated Control		124.3	27.4		108, 109, 156

Study Code: RCC-CCR 1061403 Date Plated: 22/01/2007 Date Counted: 25/01/2007

Without metabolic activation

					Printed includes					
	Strain	Compound	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts			
							52, 55, 56 65, 43, 55 42, 63, 43 33, 45, 44 29, 27, 34 20, 37, 16 56, 54, 63			
	WP2 uvrA	Glyphosate	33 µg	54.3	2.1	0.9	52, 55, 56			
		technical (NUP-	100 µg	54.3	11.0	0.9	65, 43, 55			
		05067)	333 µg	49.3	11.8	0.9	42, 63, 43			
			1000 μg	40.7	6.7	0.7 0.5	30, 45, 44			
			2500 µg	30.0	3.6	0.4	29, 27, 34 20, 37, 16			
			5000 µg	24.3	11.2 4.7	1014	56, 54, 63			
		Deionised water		57.7 52.0	3.0	i OUD i	55, 52, 49			
		Untreated Control		J2.U		9, 63	HO WE I WE			
			10	2045.3	99.4	130.6 13.7	2125, 2077, 1934			
	TA 1535	NaN3	10 µg 50 µg	2045.3 104.7	4.5	13.7				
•	TA 1537	4-NOPD	эо µд 10 µд	356.3	28.2	91.00	376, 369, 324			
	TA 98	4-NOPD	10 µg	2246.3 ×	39.1	13.7 11.0 14.9	2243, 2209, 2287			
	1A 100 M/D2 m/r∆	MMS	3.0 µL	705.3	40.0	12.2	746, 666, 704			
	VVFZ UVIA	MANG	0.0 pc) 	(1), 63, 1 7				
	Key to Positive	e Controls		July City	edpilies,	elli te				
-	4-NOPD 4-I	intro-o-phenylene-diami ethyl methane sulfonate	ne din di	Store pe of	dipited and a fight of the state of the stat	9 m				
		82 0/2 C. C.	o We							
-cunentis no	the pochule,	A publication and of this docume								
ocument is no	Like bloching the state of the bloching the state of the	The of this document of this document of this document of the state of								
ocument is no	Ure document	e Controls dium azide nitro-o-phenylene-diami ethyl methane sulfonate								
ocument is no	The document of	4-NOPD 4-NOPD NaN3 MMS								
Sument is no	reedietily af	The Print House documents of this documents of this documents of the control of t								
Schwent is no	The Ochner of Th	The Print House do In Of His do								
ocumentis no	The Ochney and Secure	The Print House do In Of His do								

Study Code: RCC-CCR 1061403 Date Plated: 22/01/2007 Date Counted: 25/01/2007

With metabolic activation

ssay Conditions:		With metabolic activation						
Strain	Compound	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts		
						23, 20, 28 13, 24, 28 12, 27, 29 20, 23, 20 23, 23, 10 22, 21, 19		
TA 1535	Glyphosate	33 µg	23.7	4.0	0.8	23, 20, 28 13, 24, 28 12, 27, 29		
	technical (NUP-	100 µg	21.7	7.8	0.8	13, 24, 28		
	05067)	333 µg	22.7	9.3	0.8	12, 27, 29		
		1000 µg	21.0	1.7	0.7	20, 23, 20		
		2500 µg	18.7	7.5	0.7	23, 23, 10		
		5000 µg	20.7	1.5	0.7	22, 21, 19		
	Deionised water		28.3	2.1	1011	26, 29, 30		
	Untreated Control		21.3	2.1	: 6,7,	19, 22, 23		
					0, 06,	dio ale a ale		
TA 1537	Glyphosate	33 µg	20.7	4.2	2 4.1 X	24, 16, 22		
174 100.	technical (NUP-	100 µg	19.3	0.6	31,000	19, 19, 20		
	05067)	333 µg	17.7	4.0	×01.0	13, 20, 20		
	,	1000 µg	19.0	4.4	10	22, 21, 14		
		2500 µg	14,3			10, 16, 17		
		5000 μg	18.7	3.8 4.5	(C) 1.9	23, 14, 19		
	Deionised water		18.3	2.9	Jan Sill	20, 20, 15		
*	Untreated Control		23,7	3.8 4.5 2.9 2.1	Ol Sign	26, 23, 22		
	Onnocion Commen	n.	3,0,0	{ \ \ __\	1			
TA 98	Glyphosate	33 µg	44.0	10.4 13.6	1.1	38, 38, 56		
	technical (NUP-	100 µg	36.3	13.6	0.9	47, 41, 21		
	05067)	333 µg	32.7	3.2	0.8	29, 35, 34		
	il	1000 µg	39.0	8.5	0.9	38, 48, 31		
	(0)	2500 μg	39.0	13.1	0.9	54, 33, 30		
	:5 P : i'	5000 µg	42.3	8.0	1.0	43, 50, 34		
	Deionised water	100 10P	41.3	3.5		38, 41, 45		
	Untreated Control	2, 0, 48	40.0	8.7		34, 50, 36		
		40,00	<u>(8) </u>					
TA 100	Glyphosate	33 µg	166.7	13.7	1.0	151, 176, 173		
	technical (NUP-	100 µg	161.3	10.8	1.0	149, 166, 169		
Ks.	05067)	333 µg	166.3	18.5	1.0	176, 145, 178		
Oel at	1 22 April 19 10	1000 µg	154.0	32.4	0.9	125, 148, 189		
10x 5/10	The Spring we	2500 μg	152.7	11.1	0.9	141, 154, 163		
	(, (10 , 1) , 11,	Zooo µg			0.9	182, 141, 115		
by Mile	y, 101, 11, 10, 10, 1	5000 00	1460	.5.5.0	U.S	102, 147, 170		
Hochus Ch	technical (NUP- 05067) Dejonised water	5000 µg	146.0 163.7	33.8 2.3	0.9	165, 165, 161		

With metabolic activation

Study Code: RCC-CCR 1061403 Date Plated: 22/01/2007 Date Counted: 25/01/2007

							I. P. I.	
	Strain	Compound	Dose level	Mean	Standard	Ratio treated /	Individual revertant colony counts	
			per plate	revertants per plate	Deviation	solvent	colony double	
				per piate			, S	
	14(00)	Glyphosate	33 µg	68.0	18.2	1.0	47, 79, 78 59, 61, 66 67, 83, 69 67, 61, 74 40, 51, 57	
	WP2 uvrA	technical (NUP-	100 µg	62.0	3.6	0.9	59, 61, 66	
			333 µg	73.0	8.7	1.1	67, 83, 69	
		05067)	300 μg 1000 μg	67.3	6.5	1.0	67, 61, 74	
			2500 µg	49.3	8.6	0.8	40, 51, 57	
			2000 μg 5000 μg	49.0	5.3	0.7	47, 45, 55	
		Deionised water	3000 μg	65.7	10.4	0.7	54, 74, 69	
		Untreated Control		68.0	16.6	, ollo,	56, 61, 87	
		Officeated Control		00.0		9, 203	47, 79, 78 59, 61, 66 67, 83, 69 67, 61, 74 40, 51, 57 47, 45, 55 54, 74, 69 56, 61, 87	
			0.5.1.0	225.0	12.1	11.8 12.5	337, 346, 322	
	TA 1535	2-AA	2.5 µg	335.0	12.1 44.5	125	205, 201, 280	
	TA 1537	2-AA	2.5 µg	228.7				
	TA 98	2-AA	2.5 µg	1008.3		2.0	0004 0100 0505	
	TA 100	2-AA	2.5 μg	2330.7 286.7	· · · CD2 · · · · · · · · · · · · · · · · · · ·	4.4	292, 267, 301	
	WP2 uvrA	2-AA	10.0 µg	200.7	0,11,0,	9 :10.	202, 201, 001	71751.w.L
	North Baskins	Controls		الله الله	0.01110.61	i dizak		
This document is not	Rey to Positive	2-AA 2-AA 2-AA 2-AA 2-AA 2-AA 2-AA 2-AA		9 1180	102 1011.	el leje		
	Z-AA 2-0	ammoananacene	likip	inicial	Libra 1	7/10		
J			ر من ی	3 100 09	Ji Jil al	0		
			75. 6	Illo di	1000			
		5.	ie soli	10,101, 4	Vic. ile			
		Oll,	30	Chi KS	Hill			
		0,000	of the	0, 10, 0	O		•	
		19,01	Sell of	-01,00 A				
		TO STEE	14, 10,0	Co Co				
		D'0, 160, 700	100, 110	10%	w *			
		LS' CUP'S	Jille YO.	.0.				
	ç	Cine the sold	Sell file					
	, 0	1 7 6. 418 "	11, 37					
	(Ch)	4,0,40, -4, 70C	11/1					
	15° 00	isell'ationis	3/0					
	0,000	14/1 11CO 11/1 11/1						
	"NO CON EI	7. 1101. 01 10ch						
Š	7, 90,	100						
	No M	3 Hills						
	· Li	O,						
eille	elji,							
Illi	alle.							
70 _{C2}	COL							
:80	03							
YAII3 O								
	•							
•							•	

15 ANNEX II: COPY OF GLP CERTIFICATE OF ANALYSIS

Willet:

CERTIFICAT D'ANALYSE CERTIFICATE OF ANALYSIS

N/Réf.;

Nom du preduit Product name

: Glyphosate Technical (NUIP 05067)

1-9609-1

: nº 02200

: August 15, 2006

: August 15, 2009

-	Caractéristiques	Het. Methode	Unites	Résultets
1	Charsoteristics	Test method ref.	Links	Results
9	Aspect	Visue	20	Poudre cristeline blanche
3	Accearance	Visual	.0.	White crystal powder
-	Glyphosate	CIPAC MT 284/TC/(80)-	74	95.0

Co produit a did snalysis en conformis evec ha principea des Bonnes Proliques de Esbaratoi domisis brutios relativos à l'incelves de cet échantillon sont auditivées chox lluterm SAS. Lobo

So protect a ten employer at combinate and an passegue are schilled character to the described as the described as the combined as the combine

Date de la copia castilida : Date of castilied copy : November 15,2006

Approbateur du certificat : Centilicaté sporever :

rychant J.m.s. 28. boulevard Camélinat - BP 75 - 92233 GENNEVALIERS Cedex (France) Tel : 01 40 85 50 56 - Telécopleur : 01 47 92 25 45

Société par Actions Simplifiée ou copital de 5 664 700 Euros R.C.S. Nortons 553 019 660 - Signi 922 029 668 66620 - 6° TVA 256 : 69. 09582029668

GALLON 27500

16 ANNEX III: COPY OF GLP CERTIFICATE

Hessisches Ministerium für Umwelt, ländlichen Raum und Verbraucherschutz

Gute Labororaxis/Good Laboratory Practice

GLP-Bescheinigung/Statement of GLP Compliance (gemäß/according to § 19b Abs. 1 Chennkeliengesetz)

Eine GLP-Inspektion zur Überwachung der Einhaltung der GLP-Grundsätze gemäß Chemikaliengesetz bzw. Richtlinie 88/320/EG wurde durchgeführt in

Assessment of conformity with GLP according to Chemikaliengesetz and Directive \$8/320/EEC at:

Prüfeinrichtung/Test facility Prüfstandort/Test site

RCC Cytotest Cell Research GmbH RCC Cytotest Cell Research GmbH In den Leppsteinwiesen 19 64380 Rolldon

(Unverwechselbare Bezeichnung und Adresse/Unequivocal name and adress)

Printungen nach Kategorien/Areas of Expertise (gemäß/according chemVwV-GLP Nr. 5.3/OECD guidance)

- 2 Prüfungen zur Bestimmung der toxikologischen Eigenschaften 3 Prüfungen zur Bestimmung der erbgutverändernden Eigenschaften (in vitro und in vivo) 3 Analytische Prüfungen an biologischen Materialien 9 Virussicherheitsprüftingen
- 2 Toxicity studies
- 3 Mutagenicity studies
- 8 Analytical studies on biological materials 9 Virus validation studies

03.06.; 19.07.-22.07.2004 Datum der Inspektion/Date of Inspection (Tag Monat Jahr/day month year)

Die genannte Prüfeinrichtung befindet sich im nationalen GLP-Überwachungsverfahren und wird regelmäßig auf Einhaltung der GLP-Grundsätze überwacht.

The above mentioned test facility is included in the national GLP Compliance Programme and is inspected on a regular basis.

Auf der Grundlage des Inspektionsberichtes wird hiermit bestätigt, dass in dieser Prüfeinrichtung die oben genannten Prüfungen unter Einhaltung der GLP- Grundsätze durchgeführt werden können.

Based on the inspection report it can be confirmed, that this test facility is able to conduct the aforementioned studies in compliance with the Principles of GLP.

Im Auftrag

teferent, Wiesbaden, den Wiesbaden, den 06. Januar 200 (Name und Funktion der verantwortlichen Person/ Name and function of responsible person)

Hess. Ministerium für Umwelt, ländlichen Raum und Verbraucherschutz, Mainzer Straffe 80 D65189 Wiesbaden

(Name und Adresse der GLP-Überwachungsbehörde/Name and address of the GLP Monitoring Authority)

D-65189 Wiesbaden, Mainzer Straße 80 Telefon: 0611, 81 50 Telefax: 0611, 81 51 94 1 E-Mall: poststelle@hmulv.hessen.de

D-65187 Wiesbaden, Hölderlinstraße 1-3 Telefon: 0611, 81 70 Telefax: 0611, 81 72 18 1