RCC - CCR STUDY NUMBER 1061402

SALMONELLA TYPHIMURIUM AND ESCHERICHIA COLI REVERSE MUTATION ASSAY

WITH

Glyphosate technical (NUP-05070)

FINAL REPORT

STUDY COMPLETION DATE: MARCH 16, 2007

1 STATEMENT OF NO DATA CONFIDENTIALITY CLAIM

No claim of confidentiality is made for any information contained in this study on the basis of it falling within the scope of FIFRA Sect. 10 (d)(1)(A), (B) or (C).

Company Agent

Title

Signature

Date

These data are considered by with Europe and are considered by with Europe and are considered by with Europe and are considered by the considered by the

These data are considered to be CONFIDENTIAL for all purposes other than compliance with FIFRA Section 10. Submission of these data in compliance with FIFRA does not constitute a waiver of any right to confidentiality, which may exist under any statue or in any other country.

The above statement supersedes any other markings of confidentially which may appear elsewhere in the report.

2 CONTENTS

		. () .
	CONTENTS CON	2
2 C	CONTENTS PREFACE General Responsibilities Schedule Project Staff Signatures Good Laboratory Practice Guidelines Archiving Deviations to Study Plan TATEMENT OF COMPLIANCE TATEMENT OF QUALITY ASSURANCE UNIT UMMARY OF RESULTS Conclusion BJECTIVE Aims of the Study Reasons for the Study ATERIALS AND METHODS Test Item Controls Test System Mammalian Microsomal Fraction S9 Mix Pre-Experiment for Toxicity Dose Selection Experimental Performance Data Recording Acceptability of the Assay Evaluation of Results Biometry	
3 P	REFACE	-Q1/
3.1	General	JUSUS
3.2	Responsibilities	Sillo 2
3.3	Scriedule Design Chaff Sign of the second s	
3.4	Cood Loboratory Processos	5
3.0	Good Laboratory Practice	5
3.0	Archiving	6
3.7 3.0	Poviations to Study Plan	6
4 S	TATEMENT OF COMPLIANCE	7
5 S	TATEMENT OF COMPLIANCE	, 9
6 SI	IMMARY OF RESULTS	0
61	Conclusion	o
7 0.1	R IFCTIVE	10
71	Aims of the Study	10
7.1	Reasons for the Study	10
8 M	ATERIALS AND METHODS	11
2 1VI.	Test Item	11
8.2	Controls	12
8.3	Test System	13
8.4	Mammalian Microsomal Fraction S9 Mix	15
8.5	Pre-Experiment for Toxicity	16
8.6	Pose Selection	16
8.75 8.75	Experimental Performance	16
8.8	Experimental Performance Data Recording Acceptability of the Assay	17
8.9	Acceptability of the Assay	17
8.10	Evaluation of Results Riometry	17
8.11	Biometry	17
9 DI	SCUSSION OF RESULTS	18
7/1/1	REFERENCES	19
0	DISTRIBUTION OF THE REPORT	19
	SUMMARY OF RESULTS	20
12.1	Summary of Results Pre-Experiment/Experiment I	20
12.2		21
	HISTORICAL CONTROL DATA	22
	ANNEX I: TABLES OF RESULTS (8 PAGES)	23
	ANNEX II: COPY OF GLP CERTIFICATE OF ANALYSIS	32
	ANNEX III: COPY OF GLP CERTIFICATE	33

3 PREFACE

3.1 General

Title: Salmonella typhimurium and Escherichia coli

Reverse Mutation Assay with Glyphosate technical

(NUP-05070)

Sponsor: Nufarm Asia Sdn Bhd

No. 9A & B, Jalan USJ 27/5

47630 Subang Jaya, Selangor, D.E.

Malaysia

Study Monitor: Dr

Nufarm Asia Sdn Bhd

Test Facility: R C C

Cytotest Cell Research GmbH (RCC-CCR)

In den Leppsteinswiesen 19

64380 Rossdorf

Germany

Contracting Institute:

R C C Ltd 4452 Itingen

Switzerland

Reference Number:

B02417

3.2 Responsibilities

Study Director: Dipl. Biol.

Deputy Study Director: Dr.

Management: Dr.

Head of Quality Assurance Unit:

3.3 Schedule

Date of the Study Plan: January 03, 2007

Experimental Starting Date: January 16, 2007
Experimental Completion Date: January 25, 2007

Date of Draft Report: February 23, 2007

Date of Final Report: March 16, 2007

3.5 Good Laboratory Practice

The study was performed in compliance with:

"Chemikaliengesetz" (Chemicals Act) of the Federal Republic of Germany, "Anhang 1" (Annex 1) dated July 25, 1994 ("BGBI. I 1994", pp. 1703), last revision dated June 27, 2002.

"OECD Principles of Good Laboratory Practice", as revised in 1997 [C(97)186/Final].

These procedures are consistent with Good Laboratory Practice Regulations specified by regulatory authorities throughout the European Community, the United States (EPA and FDA), and Japan (MHW, MAFF, and MITI).

3.6 Guidelines

This study followed the procedures indicated by the following internationally accepted guidelines and recommendations:

The OECD Guidelines for Testing of Chemicals No. 471: "Bacterial Reverse Mutation Test", adopted July 21, 1997 referenced as Method B13/14 of Commission Directive 92/69/EEC (which constitutes Annex V of Council Directive 67/548/EEC).

Japanese Ministry of Agriculture, Forestry and Fisheries (JMAFF), Guidelines for Study Results, Reverse mutation studies. Guideline No.2-1-19-1. >Notification 12NohSan No. 8147, as partly revised in 16-Shouan-9260, on March 16 2005. English translation by ACIS on October 17, 2005.

3.7 Archiving

RCC Cytotest Cell Research GmbH will archive the following data for 15 years:

Raw data, study plan, final report, and a sample of the test item.

No data will be discarded without the sponsor's consent

3.8 Deviations to Study Plan

There were no deviations to study plan

STATEMENT OF COMPLIANCE

Study Number:

1061402

Test Item:

Glyphosate technical (NUP-05070)

Study Director:

Dipl. Biol.

Title:

Salmonella typhimurium and Escherichia coli Reverse Mutation Assay with Glyphosate technical

(NUP-05070)

This study performed in the test facility of RCC Cytotest Cell Research GmbH was conducted in compliance with Good Laboratory Practice Regulations:

"Chemikaliengesetz" (Chemicals Act) of the Federal Republic of Germany, "Anhang 1" (Annex 1) dated July 25, 1994 ("BGBI, 1994", pp. 1703), last revision dated June 27, 2002.

"OECD Principles of Good Laboratory Practice", as revised in 1997 [C(97)186/Final]

This document is not the document. Any public of this document is not the document. Any public of this document is not the document. Any public of this document is not the document. There were no circumstances that may have affected the quality or integrity of the study.

RCC - CCR

Dipl. Biol.

Date: March 16, 2007

5 STATEMENT OF QUALITY ASSURANCE UNIT

Study Number:

1061402

Test Item:

Glyphosate technical (NUP-05070)

Study Director:

Dipl. Biol.

Title:

Salmonella typhimurium and Escherichia coli Reverse Mutation Assay with Glyphosate technical

(NUP-05070)

The general facilities and activities of RCC Cytotest Cell Research GmbH are inspected periodically and the results are reported to the responsible person and the management.

Study procedures were inspected periodically. The study plan and this report were audited by the Quality Assurance Unit. The dates are given below.

Phases and Dates of	QAU Inspections/ Audits	Dates of Reports to the Study Director and to Management		
Study Plan (Draft):	January 03, 2007	January 03, 2007		
Study Plan:	January 04, 2007			
Study Inspection:	January 16, 2007	January 16, 2007		
Draft Report:	March 12, 2007	March 12, 2007		

This statement is to confirm that the present final report reflects the raw data.

Head of Quality Assurance Unit

Date: March 16, 2007

6 SUMMARY OF RESULTS

This study was performed to investigate the potential of Glyphosate technical (NUP-05070) to induce gene mutations in the plate incorporation test (experiment I) and the pre-incubation test (experiment II) using the Salmonella typhimurium strains TA 1535, TA 1537, TA 98, and TA 100, and the Escherichia coli strain WP2 uvrA.

The assay was performed in two independent experiments both with and without liver microsomal activation. Each concentration, including the controls, was tested in triplicate. The test item was tested at the following concentrations:

Pre-Experiment/Experiment I:

3; 10; 33; 100; 333; 1000; 2500; and 5000 µg/plate

Experiment II:

33; 100; 333; 1000; 2500; and 5000 µg/plate

The plates incubated with the test item showed reduced background growth in strains TA 1537, TA 100 without metabolic activation and in strain WP2 uvrA with and without metabolic activation in experiment I.

No toxic effects, evident as a reduction in the number of revertants, occurred in the test groups with and without metabolic activation. Minor toxic effects occurred at 5000 µg/plate in strain WP2 uvrA in the absence of metabolic activation in experiment I and in strain TA 98 with metabolic activation in experiment If.

No substantial increase in revertant colony numbers of any of the five tester strains was observed following treatment with Glyphosate technical (NUP-05070) at any dose level, neither in the presence nor absence of metabolic activation (S9 mix). There was also no tendency of higher mutation rates with increasing concentrations in the range below the generally acknowledged border of biological relevance.

Appropriate reference mutagens were used as positive controls and showed a distinct increase of induced revertant colonies.

6.1 Conclusion

In conclusion, it can be stated that during the described mutagenicity test and under the experimental conditions reported, the test item did not induce gene mutations by base pair changes or frameshifts in the genome of the strains used.

Therefore, Glyphosate technical (NUP-05070) is considered to be non-mutagenic in this Salmonella typhimurium and Escherichia coli reverse mutation assay.

7 OBJECTIVE

7.1 Aims of the Study

The experiments were performed to assess the potential of the test item to induce gene mutations by means of two independent Salmonella typhimurium and Escherichia coli reverse mutation assays. Experiment I was performed as a plate incorporation assay. Since a negative result was obtained in this experiment, experiment II was performed as a pre-incubation assay.

7.2 Reasons for the Study

The most widely used assays for detecting gene mutations are those using bacteria (3). They are relatively simple and rapid to perform, and give reliable data on the ability of an agent to interact with DNA and produce mutations.

Reverse mutation assays determine the frequency with which an agent reverses or suppresses the effect of the forward mutation. The genetic target presented to an agent is therefore small, specific and selective. Several bacterial strains, or a single strain with multiple markers are necessary to overcome the effects of mutagen specificity. The reversion of bacteria from growth-dependence on a particular amino acid to growth in the absence of that amino acid (reversion from auxotrophy to prototrophy) is the most widely used marker.

The Salmonella typhimurium histidine (his) and the E. coli tryptophan (trp) reversion system measures his → his and trp → trp reversions, respectively. The S. typhimurium and Escherichia coli strains are constructed to differentiate between base pair (TA 1535, TA 100, and WP2 uvrA) and frameshift (TA 1537, TA 98) mutations.

According to the direct plate incorporation or the pre-incubation method the bacteria are exposed to the test item with and without metabolic activation and plated on selective medium. After a suitable period of incubation, revertant colonies are counted.

To establish a dose response effect at least 6 dose levels with adequately spaced intervals were tested. The maximum dose level was 5000 µg/plate.

To validate the test, reference mutagens were tested in parallel to the test item.

8 MATERIALS AND METHODS

8.1 Test Item

Internal RCC-CCR Test Item Number: S 693711

The test item and the information concerning the test item were provided by the sponsor.

Identity:

Glyphosate technical (NUP-05070)

Batch No.:

20060901

Aggregate state at

room temperature:

Crystalline powder

Colour:

White

Purity:

97.7 %

Solubility

10.9 g/L in water

Stability in water (sterile):

30 days at room temperature

Storage:

Room temperature

Expiration Date:

September 01, 2008

On the day of the experiment, the test item Glyphosate technical (NUP-05070) was dissolved in deionised water, the stock solution was neutralized with 5N sodium hydroxide. The solvent was chosen because of its solubility properties (5).

No precipitation of the test item occurred up to the highest investigated dose.

8.2 Controls

8.2.1 The Negative Controls

Concurrent untreated and solvent controls will be performed.

8.2.2 The Positive Control Substances

Without metabolic activation

Strains:

TA 1535, TA 100

Name:

Sodium azide, NaN₃

Supplier:

SERVA, D-69042 Heidelberg

Lot Number: Catalogue No.: 14760

30175

Purity: **Expiration Date:** at least 99 % August 2007

Dissolved in: Concentration: aqua deionised 10 µg/plate

Strains:

TA 1537, TA 98

Name:

4-nitro-o-phenylene-diamine, 4-NOPD

Supplier:

SIGMA, D-82041 Deisenhofen

Lot Number: Catalogue No.: 416324/1

Purity:

- 9004 > 99.9 % April 2

Expiration Date:

April 2009

Dissolved in:

DMSO (MERCK, D-64293 Darmstadt, purity > 99 %)

Concentration:

10 μg/plate in TA 98, 50 μg/plate in TA 1537

Strain:

WP2 uvrA

Name:

methyl methane sulfonate, MMS

Supplier:

Merck-Schuchardt, D-85662 Hohenbrunn

Lot Number: Catalogue No.:

074K3720 820775

Purity: Expiration Date: > 99.0 % October 2007

Dissolved in: Concentration: aqua deionised 3 µL/plate

With metabolic activation

Strains:

TA 1535, TA 1537, TA 98, TA 100, WP2 uvrA

Name:

2-aminoanthracene, 2-AA SIGMA, D-82041 Deisenhofen

Supplier: Lot Number:

S11804-252

Catalogue No.: Purity:

A 1381 97.5 %

Expiration Date:

November 2007

Dissolved in:

DMSO (MERCK, D-64293 Darmstadt, purity > 99 %)

Concentration:

2.5 µg/plate (TA 1535, TA 1537, TA 98, TA 100),

10 μg/plate (WP2 uvrA)

The stability of the positive control substances in solution is unknown but a mutagenic response in the expected range will be sufficient evidence of biological stability.

8.3 Test System

8.3.1 Characterisation of the Salmonella typhimurium Strains and E. coli Strain

The histidine dependent strains are derived from S. typhimurium strain LT2 through a mutation in the histidine locus. Additionally due to the "deep rough" (rfa-minus) mutation they possess a faulty lipopolysaccharide envelope which enables substances to penetrate the cell wall more easily. A further mutation causes a reduction in the activity of an excision repair system. The latter alteration includes mutational processes in the nitrate reductase and biotin genes produced in a UV-sensitive area of the gene named "uvrB-minus". In the strains TA 98 and TA 100 the R-factor plasmid pKM 101 carries the ampicillin resistance marker (6).

Strain WP2 (4) and its derivatives all carry the same defect in one of the genes for tryptophan biosynthesis. Tryptophan-independent (Trp[†]) mutants (revertants) can arise either by a base change at the site of the original alteration or by a base change elsewhere in the chromosome so that the original defect is suppressed. This second possibility can occur in several different ways so that the system seems capable of detecting all types of mutagen which substitute one base for another. Additionally, the uvrA derivative is deficient in the DNA repair process (excision repair damage). Such a repair-deficient strain may be more readily mutated by agents.

When summarised the mutations of the TA strains and the E. coli strains, used in this study can be described as follows:

Salmonella typhimurium								
Strains Common Strains	Genotype	Type of mutations indicated						
TA 1537	his C 3076; rfa"; uvrB":	frame shift mutations						
TA 98	his D 3052; rfa ⁻ ; uvrB ⁻ ;R-factor	41 44						
TA 1535	his G 46; rfa ⁻ ; uvrB ⁻ :	base-pair substitutions						
TA 100	his G 46; rfa ; uvrB ;R-factor	er ia						
Escherichia coli								
WP2 uvrA	trp ⁻ ; uvrA ⁻ :	base-pair substitutions and others						

Regular checking of the properties of the strains regarding the membrane permeability and ampicillin resistance as well as spontaneous mutation rates is performed in RCC Cytotest Cell Research according to B. Ames et al. (1) and D. Maron and B. Ames (6). In this way it was ensured that the experimental conditions set down by Ames were fulfilled.

The bacterial strains TA 1535, TA 1537, TA 98, TA 100, and WP2 uvrA were obtained from Trinova Biochem GmbH (35394 Gießen, Germany).

8.3.2 Storage

The strain cultures were stored as stock cultures in ampoules with nutrient broth + 5 % DMSO (MERCK, D-64293 Darmstadt) in liquid nitrogen.

8.3.3 Precultures

From the thawed ampoules of the strains 0.5 mL suspension was transferred into 250 mL Erlenmeyer flasks containing 20 mL nutrient medium. A solution of 20 μ L ampicillin (25 μ g/mL) was added to the strains TA 98 and TA 100. This nutrient medium contains per litre:

- 8 g Merck Nutrient Broth (MERCK, D-64293 Darmstadt)
- 5 g NaCl (MERCK, D-64293 Darmstadt)

The bacterial cultures were incubated in a shaking water bath for 4 hours at 37° C.

8.3.4 Selective Agar

The plates with the selective agar were obtained from E. Merck, D-64293 Darmstadt (Catalogue No.:1.13496.00.1; Lot No.:62355).

8.3.5 Overlay Agar

The overlay agar contains per litre:

for Salmonella strains:

for Escherichia coli:

6.0 g MERCK Agar Agar*

6.0 g MERCK Agar Agar*

6.0 g NaCl*

6.0 g NaCl*

10.5 mg L-Histidine×HCl×H2O*

2.5 mg Tryptophan*

12.2 mg Biotin*

* (MERCK, D-64293 Darmstadt)

Sterilisations were performed at 121° C in an autoclave.

8.4 Mammalian Microsomal Fraction S9 Mix

The bacteria used in this assay do not possess the enzyme systems which, in mammals, are known to convert promutagens into active DNA damaging metabolites. In order to overcome this major drawback an exogenous metabolic system is added in form of mammalian microsome enzyme activation mixture.

8.4.1 S9 (Preparation by R C C - C C R)

Phenobarbital/ β -Naphthoflavone induced rat liver S9 is used as the metabolic activation system. The S9 is prepared from 8 - 12 weeks old male Wistar Hanlbm rats, weight approx. 220 - 320 g induced by applications of 80 mg/kg b.w. Phenobarbital i.p. (Desitin; D-22335 Hamburg) and β -Naphthoflavone p.o. (Aldrich, D-89555 Steinheim) each on three consecutive days. The livers are prepared 24 hours after the last treatment. The S9 fractions are produced by dilution of the liver homogenate with a KCl solution (1+3) followed by centrifugation at 9000 g. Aliquots of the supernatant are frozen and stored in ampoules at -80° C. Small numbers of the ampoules can be kept at -20°C for up to one week. Each batch of S9 mix is routinely tested with 2-aminoanthracene as well as benzo(a)pyrene.

The protein concentration in the S9 preparation was 38.1 mg/mL (lot no. R 031106) in both experiments.

8.4.2 S9 Mix

Before the experiment an appropriate quantity of S9 supernatant was thawed and mixed with S9 co-factor solution. The amount of S9 supernatant was 10% v/v in the S9 mix. Cofactors are added to the S9 mix to reach the following concentrations in the S9 mix:

8 mM MgCl₂ 33 mM KCl 5 mM Glucose-6-phosphate 5 mM NADP

in 100 mM sodium-ortho-phosphate-buffer, pH 7.4.

During the experiment the S9 mix was stored in an ice bath. The S9 mix preparation was performed according to Ames et al.(1).

8.5 Pre-Experiment for Toxicity

To evaluate the toxicity of the test item a pre-experiment was performed with strains TA 1535, TA 1537, TA 98, TA 100, and WP2 uvrA. Eight concentrations were tested for toxicity and mutation induction with three plates each. The experimental conditions in this pre-experiment were the same as described below for the experiment I (plate incorporation test).

Toxicity of the test item results in a reduction in the number of spontaneous revertants or a clearing of the bacterial background lawn.

The pre-experiment is reported as main experiment I, if the following criteria are met:

Evaluable plates (>0 colonies) at five concentrations or more in all strains used.

8.6 Dose Selection

In the pre-experiment the concentration range of the test item was $3-5000~\mu g/plate$. The pre-experiment is reported as experiment I since no relevant toxic effects were observed and $5000~\mu g/plate$ were chosen as maximal concentration.

The concentration range included two logarithmic decades. The following concentrations were tested in experiment II:

33; 100; 333; 1000; 2500; and 5000 µg/plate

8.7 Experimental Performance

For each strain and dose level including the controls, three plates were used.

The following materials were mixed in a test tube and poured onto the selective agar plates:

- 100 µL Test solution at each dose level, solvent (negative control) or reference mutagen solution (positive control),
- 500 μL S9 mix (for test with metabolic activation) or S9 mix substitution buffer (for test without metabolic activation),
- 100 μL Bacteria suspension (cf. test system, pre-culture of the strains),
- 2000 µL Overlay agar

In the pre-incubation assay 100 μ L test solution, 500 μ L S9 mix / S9 mix substitution buffer and 100 μ L bacterial suspension were mixed in a test tube and shaken at 37° C for 60 minutes. After pre-incubation 2.0 mL overlay agar (45° C) was added to each tube. The mixture was poured on selective agar plates.

After solidification the plates were incubated upside down for at least 48 hours at 37° C in the dark (2).

8.8 Data Recording

The colonies were counted using the Petri Viewer Mk2 (Perceptive Instruments Ltd, Suffolk CB 7BN, UK) with the software program Ames Study Manager. The counter was connected to an IBM AT compatible PC with printer to print out the individual values and the means from the plates for each concentration together with standard deviations and enhancement factors as compared to the spontaneous reversion rates (see tables of results). Due to wide spread bacteria colony growth some plates were counted manually.

8.9 Acceptability of the Assay

The Salmonella typhimurium and Escherichia coli reverse mutation assay is considered acceptable if it meets the following criteria:

- regular background growth in the negative and solvent control
- the spontaneous reversion rates in the negative and solvent control are in the range of our historical data
- the positive control substances should produce a significant increase in mutant colony frequencies

8.10 Evaluation of Results

A test item is considered as a mutagen if a biologically relevant increase in the number of revertants exceeding the threshold of twice (strains TA 98, TA 100, and WP2 uvrA) or thrice (strains TA 1535 and TA 1537) the colony count of the corresponding solvent control is observed (3).

A dose dependent increase is considered biologically relevant if the threshold is exceeded at more than one concentration (2).

An increase exceeding the threshold at only one concentration is judged as biologically relevant if reproduced in an independent second experiment.

A dose dependent increase in the number of revertant colonies below the threshold is regarded as an indication of a mutagenic potential if reproduced in an independent second experiment. However, whenever the colony counts remain within the historical range of negative and solvent controls such an increase is not considered biologically relevant.

8.11 Biometry

According to the OECD guideline 471, a statistical analysis of the data is not mandatory.

9 DISCUSSION OF RESULTS

The test item Glyphosate technical (NUP-05070) was assessed for its potential to induce gene mutations in the plate incorporation test (experiment I) and the pre-incubation test (experiment II) using Salmonella typhimurium strains TA 1535, TA 1537, TA 98, and TA 100, and the Escherichia coli strain WP2 uvrA.

The assay was performed in two independent experiments both with and without liver microsomal activation. Each concentration and the controls were tested in triplicate. The test item was tested at the following concentrations:

Pre-Experiment/Experiment I:

3; 10; 33; 100; 333; 1000; 2500; and 5000 µg/plate

Experiment II:

33; 100; 333; 1000; 2500; and 5000 µg/plate

The plates incubated with the test item showed reduced background growth at the following concentrations (µg/plate):

Strain	Exper	iment) 8 4	Experiment II			
	without S9 mix	with S9 mix	without S9 mix	with S9 mix		
TA 1535	1	William William	13 111	1		
TA 1537	333 - 5000	1160 (83/10/20)	Jal 1	1		
TA 98	1, 11/1/10	of all the	9 1	1		
TA 100	2500 - 5000	ug app Ve sug	1	1		
WP2 uvrA	5000	5000	1	/		

/ = no reduced background growth

No toxic effects, evident as a reduction in the number of revertants, occurred in the test groups with and without metabolic activation. Minor toxic effects occurred at 5000 μ g/plate in strain WP2 uvrA in the absence of metabolic activation in experiment I and in strain TA 98 with metabolic activation in experiment II.

No substantial increase in revertant colony numbers of any of the five tester strains was observed following treatment with Glyphosate technical (NUP-05070) at any dose level, neither in the presence nor absence of metabolic activation (S9 mix). There was also no tendency of higher mutation rates with increasing concentrations in the range below the generally acknowledged border of biological relevance.

Appropriate reference mutagens were used as positive controls. They showed a distinct increase of induced revertant colonies.

The laboratory's historical control range was not quite reached in the untreated control of strain TA 1535 with and without metabolic activation in experiment II. These minor deviations (10 versus 11 colonies and 9 versus 10 colonies, respectively) are judged to be based on biologically irrelevant fluctuations in the number of colonies and have no impact on the outcome of the study.

In conclusion, it can be stated that during the described mutagenicity test and under the experimental conditions reported, the test item did not induce gene mutations by base pair changes or frameshifts in the genome of the strains used.

10 REFERENCES

- Ames, B.N., J. McCann, and E. Yamasaki (1977)
 Methods for detecting carcinogens and mutagens with the Salmonella/mammalian
 microsome mutagenicity test
 In: B.J. Kilbey et al. (Eds.)"Handbook of Mutagenicity Test Procedures" Elsevier,
 Amsterdam, 1-17
- 2. de Serres F.J. and M.D. Shelby (1979)
 Recommendations on data production and analysis using the Salmonella/microsome mutagenicity assay
 Mutation Res. 64, 159-165
- Hollstein, M., J. McCann, F.A. Angelosanto and W.W. Nichols (1979) Short-term tests for carcinogens and mutagens Mutation Res. 65, 133-226
- Green, M.H.L. and W.J. Muriel (1976) Mutagen Testing Using TRP⁺ Reversion in Escherichia Coli Mutation. Res. 38, 3-32
- Maron D.M., J. Katzenellenbogen and B.N. Ames, (1981)
 Compatibility of organic solvents with the Salmonella/Microsome Test Mutation Res. 88, 343-350
- Maron D.M., Ames, B.N. (1983)
 Revised methods for the Salmonella mutagenicity test
 Mutation Res. 113, 173-215

11 DISTRIBUTION OF THE REPORT

Sponsor

 $2 \times (copy)$

Contacting Institute

1 x (electronic copy (pdf-file)

Study Director

1 × (original)

12 SUMMARY OF RESULTS

12.1 Summary of Results Pre-Experiment/Experiment I

Study Name: 1061402 Experiment: 1061402 VV Plate Assay Conditions:

Study Code: RCC-CCR 1061402 Date Plated: 16/01/2007 Date Counted: 19/01/2007

Metabolic Activation	Test Group	Dose Level (µg/plate)	Revertant C	Colony Count	s (Mean ±SD	ilg be affe	20
			<u>TA 1535</u>	<u>TA 1537</u>	TA 98	<u>TA 100</u>	WP2 uvrA
Without Activation	Deionised water Untreated Glyphosate technical (NUP-05070)	3 µg 10 µg 33 µg 100 µg 333 µg 1000 µg 2500 µg	18 ± 1 20 ± 0 16 ± 1 21 ± 2 21 ± 2 17 ± 6 14 ± 5 13 ± 3	14±2 7±2 14±4 12±2 13±1 15±6 9±16 ^R 9±3 ^R	27 ± 4 29 ± 3 27 ± 4 31 ± 2 29 ± 3 31 ± 4 28 ± 9 30 ± 6 25 ± 2	131 ± 9 131 ± 5 128 ± 19 138 ± 11 138 ± 5 127 ± 16 117 ± 4 130 ± 17 119 ± 10 R	61 ± 12 57 ± 5 45 ± 4 51 ± 4 64 ± 20 56 ± 7 58 ± 3 45 ± 7 43 ± 3 27 ± 9 ^R
	NaN3 4-NOPD 4-NOPD MMS Deionised water Untreated Glyphosate technical (NUP-05070)	5000 µg 10 µg 10 µg 50 µg 3.0 µL 3 µg 10 µg 33 µg	20 ± 2 1935 ± 62		23 ± 1 503 ± 3	98 ± 5 ^R 2447 ± 87	1324 ± 69
Ç V .	Deionised water Untreated Glyphosate technical (NUP-05070)	C. L. Lat.	24±3 20±3 20±5 21±1 24±4 23±8 20±7 17±5 21±6 16±7 309±19	13 ± 9 9 ± 0 8 ± 2 9 ± 2 22 ± 5 21 ± 1 13 ± 3 18 ± 5 11 ± 4 16 ± 3 81 ± 6	33 ± 7 30 ± 5 36 ± 0 37 ± 3 36 ± 7 41 ± 7 37 ± 6 37 ± 5 31 ± 3 31 ± 6 1094 ± 33	140 ± 11 138 ± 5 138 ± 11 149 ± 7 133 ± 6 147 ± 6 141 ± 10 150 ± 10 150 ± 5 123 ± 39 1595 ± 107	78 ± 10 68 ± 9 66 ± 5 68 ± 9 69 ± 5 65 ± 6 67 ± 5 63 ± 6 65 ± 3 50 ± 5 ^R
2/1	E. F.L.						

Key to Positive Controls

Key to Plate Postfix Codes

R

NaN3 2-AA 4-NOPD

sodium azide 2-aminoanthracene

4-nitro-o-phenylene-diamine methyl methane sulfonate MMS

Reduced background growth

12.2 Summary of Results Experiment II

Study Name: 1061402 Experiment: 1061402 HV2 Pre Assay Conditions:

Study Code: RCC-CCR 1061402 Date Plated: 22/01/2007

Date Counted: 25/01/2007

Metabolic Activation	Test <u>Group</u>	Dose Level (µg/plate)	Revertant (Colony Count	s (Mean ±SD)	cimes.	ad use
			<u>TA 1535</u>	<u>TA 1537</u>	TA 98	TA 100	WP2 uvrA
Without Activation	Deionised water Untreated Glyphosate technical (NUP-05070) NaN3 4-NOPD 4-NOPD MMS	33 µg 100 µg 333 µg 1000 µg 2500 µg 5000 µg 10 µg 10 µg 50 µg 3.0 µL	9±1 ^{8M} 10±3 ^{8M} 8±2 ^{8M} 9±1 ^{38M} 7±1 ^{8M} 7±1 ^{8M} 9±3 ^{8M} 2225±22	16 ± 5 14 ± 6 13 ± 1 17 ± 7 18 ± 3 16 ± 4 14 ± 3 10 ± 6 131 ± 23	21 ± 4 BM 21 ± 2 BM 16 ± 2 BM 20 ± 4 BM 18 ± 2 BM 18 ± 2 BM 14 ± 2 BM 12 ± 2 BM	130 ± 3 145 ± 15 131 ± 5 146 ± 3 152 ± 5 150 ± 2 137 ± 27 127 ± 12 2234 ± 37	53 ± 2 62 ± 14 54 ± 6 64 ± 2 65 ± 7 49 ± 12 34 ± 6 30 ± 5
With Activation	Deionised water Untreated Glyphosate technical (NUP-05070)	33 µg 100 µg 333 µg 1000 µg	8 ± 1 BM 9 ± 3 BM 6 ± 1 BM 6 ± 1 BM 14 ± 2 BM 10 ± 1 BM 12 ± 3 BM 10 ± 2 BM 301 ± 45	24±8 24±5 24±12 17±3 18±3 19±5 22±2 18±2 186±13	45 ± 5 BM 43 ± 3 BM 37 ± 8 BM 38 ± 8 BM 38 ± 1 BM 33 ± 3 BM 23 ± 6 BM 18 ± 4 BM 1014 ± 104	211 ± 29 158 ± 20 180 ± 15 197 ± 17 183 ± 20 156 ± 20 163 ± 11 130 ± 6 1472 ± 220	69 ± 6 66 ± 11 80 ± 9 77 ± 9 67 ± 7 64 ± 9 68 ± 29 49 ± 7 230 ± 16

0.	1	()		/ -	-/		~\
Kev	416	D.	~#A	in	α_{α}	tra!	lw)
∢r\∺v	25.2	~ (12000	V		11 (6.7)	

Key to Plate Postfix Codes

NaN3 sodium azide 2-AA 2-aminoanthracene 4-NOPD 4-nitro-o-phenylene-MMS methyl methane sulf 4-nitro-o-phenylene-diamine methyl methane sulfonate

Extensive bacterial growth В Μ Manual count

13 HISTORICAL CONTROL DATA

These data represent the laboratory's historical control data from May 2005 until June 2006 representing approx. 200 experiments (WP2 uvrA the historical data are based on approx. 100 experiments).

Strain			with	out S9 mix		90Coli	with S9 i	nix	
		Mean	SD	Min	Max	Mean	SD	Min	Max
	Solvent control	20.8	4.7	9	35 %	24.7	5.9	7	43
TA 1535	Negative control	20.4	4.4	11	131,101	24.2	5.5	10	38
	Positive control	1422.0	464.7	781	4900	332.0	95.3	107	695
	Solvent control	11.2	3.7	5	28	16.2	5.0	6	36
TA1537	Negative control	11.6	4.0	in aid	28 425	S17.1	5.4	7	34
	Positive control	99.8	32.5	9 53 N	425	276.8	132.6	59	746
	Solvent control	28.1	6,1	20172	49 60	37.9	7.4	20	57
TA 98	Negative control	30.2	6.6		ii ⁰ 60	39.0	7.5	18	64
	Positive control	439.0	155.2	176	1818	1839.4	898.6	407	4891
	Solvent control	130.7	20.8	87	197	147.0	25.5	84	255
TA 100	Negative control	138.2	21.6	86	216	150.1	24.2	96	214
	Positive control	2083.1	281.3	616	2872	2372.9	958.4	417	5230
	Solvent control	55.8	7.2	31	74	63.9	9.1	34	84
WP2uvrA	Negative control	055.9	8.6	36	76	65.6	10.4	33	91
Persit Mi	Positive control	991.0	522.9	249	1810	319.4	84.8	211	930

Mean = mean value of revertants/plate

SD = standard deviation

Min = minimal value/Max = maximal value

Light of the state Consequently of the land of th

Study Code: RCC-CCR 1061402 Date Plated: 16/01/2007 Date Counted: 19/01/2007

Without metabolic activation

			With four to	iletabolio act		
Strain	Compound	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts
						C is a co
TA 1535	Glyphosate	3 µg	16.3	1.2	0.9	15, 17, 17 19, 23, 21 22, 19, 23 20, 20, 10
	technical	10 µg	21.0	2.0	1.2	19, 23, 21
	(NUP-05070)	33 µg	21.3	2.1	1.2	22, 19, 23
		100 µg	16.7	5.8	0.9	
		333 µg	13.7	4.7	0.8	19, 12, 10
		1000 µg	13.0	2.6		14, 15, 10
		2500 µg	17.7	4.2	4.07	21, 13, 19
		5000 µg	20.3	1.5	0 12	22, 19, 20
	Deionised water		17.7	1.2	90,90	17, 17, 19
	Untreated Control		20.0	0.0	3/10/0/	20, 20, 20
				th, "the	10, 31,	311000
TA 1537	Glyphosate	3 µg	13.7	4.0	Z 1.0	16, 16, 9
	technical	10 µg	11.Z.O	1.5	0.9	10, 12, 13
	(NUP-05070)	33 µg	13.0	1 7 2/2	\sim	4, 12, 13
	(100 µg	14.7	5.5	1.10	20, 9, 15
		333 µg	9.0	1.0 5.5 1.0	1.0 1.1 0.7	9R, 10R, 8R
		1000 µg	8.7	1.0 5.5	0.6	15 R, 5 R, 6 R
		2500 µg		/() ×/.	2	9 R, 12 R, 7 R
		5000 µg	9.3 9.0	2.5 1.7	0.7	7 R, 10 R, 10 R
	Deionised water	000000	13,7	11 29	017	16, 13, 12
	Untreated Control	30 650 24	6.7.6	1.5		7, 5, 8
	Ontrodica Control	113 100 C	10000	0		-,-,-
TA 98	Glyphosate	⊘3 µg⊃	26,70	4.0	1.0	26, 31, 23
.,,,,,	technical	10 µg	30.7	2.1	1.1	29, 30, 33
	(NUP-05070)	33 µg	29.0	2.6	1.1	30, 31, 26
	(2) 103 90	100 µg	31.3	3.8	1.2	27, 34, 33
	Cly Sin's city	333 µg	27.7	9.0	1.0	19, 37, 27
Ŏ	1 De Consider	1000 µg	29.7	5.5	1.1	36, 26, 27
Es.	184 OLO 0, CO	2500 μg	25.3	2.3	0.9	28, 24, 24
OE) X	(1, "(1, "(0), 90)	5000 μg	23.3	0.6	0.9	24, 23, 23
10 P 8/1	technical (NUP-05070)	2. 0000 pg	27.0	3.6	575	26, 31, 24
re plobelty of	(NUP-05070) Deionised water Untreated Control		29.3	3.2		33, 28, 27
100 X	Ontreated Control		20.0	U.L		00, 20, 2.
TA 100	Glyphosate	3 µg	128.0	19.2	1.0	106, 137, 141
IV 100 10.	technical	3 μg 10 μg	138.0	11.0	1.1	127, 138, 149
Sills.	(NUP-05070)	33 μg	138.0	5.3	1.1	132, 142, 140
"Is	(1405-00010)	33 µg 100 µg	127.0	15.6	1.0	135, 109, 137
601				15.6 4.2	0.9	116, 122, 114
5		333 µg	117.3	4.2 17.2	0.9 1.0	149, 127, 115
7		1000 µg	130.3			
		2500 µg	118.7	10.2	0.9	107 R, 126 R, 123 R
		5000 µg	98.0	5.2	0.7	101 R, 101 R, 92 R
	Deionised water		131.3	9.1		141, 123, 130
	Untreated Control		131.3	4.6		134, 126, 134

Key to Plate Postfix Codes

Reduced background growth

Study Code: RCC-CCR 1061402 Date Plated: 16/01/2007

Date Counted: 19/01/2007

Without metabolic activation

		Strain	Compound	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts
								49, 41, 44 55, 47, 52 42, 80, 69 48, 57, 62 62, 57, 56
		WP2 uvi		3 µg	44.7	4.0	0.7	49, 41, 44
			technical	10 µg	51.3	4.0	0.8	55, 47, 52
			(NUP-05070)	33 µg	63.7	19.6	1.0	49, 41, 44 55, 47, 52 42, 80, 69 48, 57, 62
				100 µg	55.7	7.1	0.9	48, 57, 62 62, 57, 56
				333 µg	58.3	3.2		48, 51, 37
				1000 µg 2500 µg	45.3 43.3	7.4 3.2	0.7 0.7	10 47 44
				2500 μg 5000 μg	43.3 26.7	9.1	0.4	20 R, 23 R, 37 R
			Deionised water	3000 μg	61.0	12.5	0, 06,	47, 65, 71
			Untreated Contro	1	57.3	4.9	70,76	42, 47, 41 20 R, 23 R, 37 R 47, 65, 71 55, 54, 63
			Ontreated Contro		07.0	-0. 7	100.00.	1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		TA 1535	5 NaN3	10 μg	1934.7	Proces	109.5	1920, 2003, 1881
	,	TA 1537		70 μg 50 μg	81.7	4.9	6.0	85, 76, 84
			4.11000	40	81.7 503.0 2447.3	2.6	18.6	505, 504, 500
		TA 100	NaN3	10 µg	2447.3	86.8	109.5 6.0 18.6 18.6	2547, 2407, 2388
		WP2 uvr	A MMS	3.0 µL	1324.0	68.7	21.7	1309, 1399, 1264
		Key to Posi	itive Controls	ijir	inight of a	or bille	ijos	Key to Plate Postfix Codes
		NaN2	codium azido	· (1)	5 100 C	10 11 11	<i>></i>	R Reduced background growth
		4-NOPD	4-nitro-o-phenylene-diar	nine	11/2 31	1000		Trouble basing salite grants.
			20	Mr. Wo.	in all	0),		
		×	de liter and is one of the state of the stat	Chilley Legion	stole be of			
sument.	SIO	the blocky	itive Controls sodium azide 4-nitro-o-phenylene-diar methyl methane sulfona	idnicht nicht	Stop of the of			
, his document	CO	the older the		idnicht nicht in der in	one be of			
nis document	Co			idnicht nicht of te growth of the country of the co	interior			
nis document	CO			idnicht nicht	in the property of the propert			

Study Code: RCC-CCR 1061402 Date Plated: 16/01/2007 Date Counted: 19/01/2007

With metabolic activation

Strain	Compound	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts
TA 1535	Glyphosate	3 µg	19.7	4.9	0.8	23, 14, 22 20, 22, 22 20, 24, 28 26, 14, 30
	technical	10 µg	21.3	1.2	0.9	20, 22, 22
	(NUP-05070)	33 µg	24.0	4.0	1.0	20, 24, 28
		100 µg	23.3	8.3	1.0	26, 14, 30
		333 µg	20.0	7.0	0.8	27,20, 130
		1000 µg	16.7	4.6	0.70	22, 14, 14
		2500 µg	20.7	5.7	0.8	16, 27, 19
		5000 µg	16.3	7.1	(0,74)	. 15, 10, 24
	Deionised water		24.3	3.2	0,00	23, 28, 22
	Untreated Control		20.3	2.9	10° 60°	22, 17, 22
				, e`, ?	5, 6, 7	120
TA 1537	Glyphosate	3 µд	7.7	2.1	0.6	6, 10, 7
	technical	10 µg	9.0	127 A	0.7	7, 10, 10
	(NUP-05070)	33 µg	22.0	5.30	0 1:70	16, 24, 26
		100 µg	20.7	10	1.6	20, 20, 22
		333 µg	13.0	2.6	1.00	15, 14, 10
		1000 µg	18.3	5.0	1.4	13, 23, 19
		2500 µg	11.3	4.2	0.9	10, 8, 16
		5000 µg	16.3	3.1	1.3	19, 13, 17
	Deionised water	760 4	13.0	8.9		23, 6, 10
	Untreated Control	30 270 16	9.0	0.0		9, 9, 9
		10 00	70, 70	MIL.		
TA 98	Glyphosate O	3 µg	36.0	0.0	1.1	36, 36, 36
	technical	210 µg	36.7	3.1	1.1	40, 34, 36
	(NUP-05070)	33 µg	36.3	6.8	1.1	44, 31, 34
	(O) (O) AS	100 µg	40.7	7.1	1.2	33, 47, 42
	(5° 6) 15 10	333 µg	37.0	5.6	1.1	31, 38, 42
8	C. 6 HI. HIL	1000 µg	37.0	4.6	1.1	33, 36, 42
10	, of yes, giz in	2500 µg	30.7	3.1	0.9	28, 30, 34
	W. W. W. 400	5000 µg	30.7	5.9	0.9	24, 33, 35
OP SOIL	Deionised water		33.3	6.7		29, 41, 30
Property of	Untreated Control		30.0	5.2		36, 27, 27
5, 5,	770, 0, 700					
TA 100	Glyphosate	3 µg	138.0	10.8	1.0	147, 141, 126
3/1	technical	10 µg	149.0	7.0	1.1	141, 152, 154
:14.	(NUP-05070)	33 µg	133.3	6.4	1.0	136, 126, 138
,er		100 µg	147.3	5.8	1.1	144, 154, 144
9/2		333 µg	140.7	10.0	1.0	152, 137, 133
O		1000 µg	150.0	9.5	1.1	145, 161, 144
		2500 µg	149.7	4.6	1.1	155, 147, 147
		5000 μg	123.3	38.5	0.9	84, 125, 161
	Deionised water		139.7	10.8		132, 152, 135
	Untreated Control		138.3	5.1		134, 144, 137

Study Code: RCC-CCR 1061402 Date Plated: 16/01/2007 Date Counted: 19/01/2007

With metabolic activation

							200
·	Strain	Compound	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts
	WP2 uvrA	Glyphosate	3 µg	66.3	4.9	0.9	63, 72, 64
		technical	10 µg	68.0	8.7	0.9	63, 72, 64 58, 73, 73 66, 74, 66 59, 66, 70 64, 73, 64
		(NUP-05070)	33 µg	68.7	4.6	0.9	66, 74, 66
		•	100 µg	65.0	5.6	0.8	59, 66, 70
			333 µg	67.0	5.2	0.9	64, 73, 64
			1000 µg	63.3	5.9	0.80	59, 61, 70
			2500 µg	64.7	2.5	0.8	05 67 69
			5000 μg	49.7	5.0	(20.61)	49 R, 45 R, 55 R
		Deionised water		78.0	9.5	0, 00,00	69, 77, 88
k		Untreated Control		68.3	8.7	90,40	69, 77, 88 69, 77, 88 61, 66, 78
					0,0	0,0	
	TA 1535	2-AA	2.5 µg	309.3	18.8	12.7	313, 326, 289
	TA 1537	2-AA	2.5 µg			12.7 6.3	84, 74, 86
	TA 98	2-AA	2.5 µg	81.3 1094.3 1594.7	32.7	6.3 32.8	1118, 1057, 1108
	TA 100	2-AA	2.5 µg	1594.7	107.2	32.8 11.4	1712, 1570, 1502
				. ////	013.4	(/, 340	243, 253, 227
	WIZUVIA	2-701	10:0 µg	1/6/0	0000	(0)	
	Key to Positive	Controls	, dil	11,96,1	ol bille	7,	Key to Plate Postfix Codes
	2-AA 2-a	minoanthracene	760, 11,0	11/11/3/6	100, 9 st.		R Reduced background growth
		Controls minoanthracene	The Tradition of the State of t	stole be of	Shift.		
This document is not	the proving the	Controls minoanthracene					

Study Code: RCC-CCR 1061402 Date Plated: 22/01/2007 Date Counted: 25/01/2007

Without metabolic activation

				Oterralend	Ratio	Individual revertant
Strain	Compound	Dose level	Mean revertants	Standard Deviation	treated /	colony counts
		per plate	per plate	Deviation	solvent	obiony bounts
			Por proces			
TA 1535	Glyphosate	33 µg	8.0	2.0	0.9	6 B M, 8 B M, 10 B M
	technical	100 µg	9.3	1.2	1.0	10 B M, 10 B M, 8 B M
	(NUP-05070)	333 µg	10.0	2.6	1.1	12 B M, 7 B M, 11 B M
	(,	1000 µg	7.3	0.6	0.8	7 B M, 7 B M, 8 B M
		2500 µg	7.7	0.6	0.8	8 B M, 8 B M, 7 B M
		5000 µg	9.0	2.6	1.00	10 B M, 11 B M, 6 B M
	Deionised water		9.3	1.2	1011	8 B M, 10 B M, 10 B M
	Untreated Control		9.7	2.9	5001	13 B M, 8 B M, 8 B M
				, X	0, 06,	CH ATT ST WITH
TA 1537	Glyphosate	33 µg	13.3	1.2	0.8	12, 14, 14
	technical	100 µg	17.0	7:0	D) 10	20, 22, 9
	(NUP-05070)	333 µg	17.7	3.1	29.10	15, 21, 17
	,	1000 µg	15.7	3.5	0.0	19, 12, 16
		2500 µg	14.3	2.5	1.0 0.9	14, 12, 17
		5000 µg	9.7	5.9	0.6	3, 14, 12
	Deionised water		16.0	5.2	(1),	13, 22, 13
	Untreated Control		9 14.3	2.5 5.9 5.2 5.7	0.6	16, 19, 8
		<i>id</i> ,	10,01	N 7 1/10	77/	
TA 98	Glyphosate	33 µg	16.0	2.0	0.8	16 B M, 14 B M, 18 B M
	technical	100 µg	19.7	3.8	0.9	24 B M, 18 B M, 17 B M
	(NUP-05070)	333 µg	17.7	21	0.8	17 B M, 20 B M, 16 B M
	011	1000 µg	18.3	1.5	0.9	17 B M, 20 B M, 18 B M
	DIO i	2500 µg	13.7	1.5	0.7	15 B M, 14 B M, 12 B M
	7.18,0	5000 µg	11.70	2.1	0.6	14 B M, 11 B M, 10 B M
	Deionised water	71, 10,0	21.0	3.6		18 B M, 20 B M, 25 B M
	Untreated Control	10/11	21.3	2.3		20 M B, 24 M B, 20 M B
	15 CV .S	70 70 5	~			
TA 100	Glyphosate	33 µg	131.3	4.9	1.0	128, 137, 129
100	technical	100 µg	146.3	2.9	1.1	148, 148, 143
	technical (NUP-05070)	333 µg	152.0	5.0	1.2	152, 147, 157
1000	Hills Control	1000 µg	150.0	1.7	1.2	148, 151, 151
bi We	The How the My	2500 µg	137.0	27.2	1.1	133, 112, 166
(o , Cn, <	12, 0, 70 Ce	5000 µg	127.3	12.2	1.0	130, 114, 138
e popular	Deionised water		130.0	3.0		127, 130, 133
S of	Untreated Control		144.7	14.6		128, 151, 155

Key to Plate Postfix Codes

B Extensive bacterial growth

Manual count

Study Name: 1061402 Experiment: 1061402 HV2 Pre

Assay Conditions:

Without metabolic activation

Study Code: RCC-CCR 1061402 Date Plated: 22/01/2007 Date Counted: 25/01/2007

	Strain	Compound	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts	- Su
	WP2 uvrA	Glyphosate technical (NUP-05070) Deionised water Untreated Control	33 µg 100 µg 333 µg 1000 µg 2500 µg 5000 µg	54.3 64.3 65.3 48.7 34.3 30.3 53.0 62.0	5.5 1.5 7.0 11.7 5.5 5.1 1.7	0.6 0.6	48, 58, 57 64, 66, 63 58, 72, 66 40, 44, 62 28, 38, 37 36, 29, 26 52, 52, 55 59, 50, 77	>
	TA 1535 TA 1537 TA 98 TA 100 WP2 uvrA	NaN3 4-NOPD 4-NOPD NaN3 MMS	10 µg 50 µg 10 µg 10 µg 3.0 µL	2225.0 131.0 1011.7 2233.7 370.7	96/2	238.4 8.2 48.2 17.2 7.0	2238, 2237, 2200 152, 106, 135 905, 1015, 1115 2198, 2232, 2271 439, 383, 290	
,	Key to Positive	Controls	;;(full city	ednilliel.	Silvisie r		
ent is no	MMS met	NaN3 MMS Controls fium azide ttro-o-phenylene-diamin thyl methane sulfonate	Story Stray	Store of the original	in out to and			
	nsedule.							

Study Code: RCC-CCR 1061402 Date Plated: 22/01/2007 Date Counted: 25/01/2007

With metabolic activation

Strain	Compound	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts
TA 1535	Glyphosate	33 µg	6.0	1.0	0.7	6 B M, 5 B M, 7 B M
	technical	100 µg	11.0	3.6	1.3	15 B M, 8 B M, 10 B M
	(NUP-05070)	333 µg	13.7	1.5	1.6	12 B M, 14 B M, 15 B M
	,	1000 µg	9.7	0.6	1.2	10 B M, 10 B M, 9 B M
		2500 µg	11.7	2.5	1.4	9 B M, 12 B M, 14 B M
		5000 µg	10.3	2.1	1.2,0	11 B M, 12 B M, 8 B M
	Deionised water	, ,	8.3	1.2	101,	9 B M, 7 B M, 9 B M
	Untreated Control		9.3	3.2	8621	8 B M, 7 B M, 13 B M
				ž,	0, 66,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TA 1537	Glyphosate	33 µg	24.0	11.5	1.00	37, 15, 20
	technical	100 µg	17.0	2.6	0.7	16, 15, 20
	(NUP-05070)	333 µg	18.0	2.6	0.8	16, 17, 21
	,	1000 µg	19.3	5.0	0.8	20, 14, 24
		2500 µg	22.3	02.10	0.9	24, 23, 20
		5000 µg	18.3	2.9		20, 16, 19
	Deionised water		24.0	~07 A	0,1/1/2	15, 28, 29
	Untreated Control		24.3	43	8/3/	28, 26, 19
····		idil	10,01	16 16 x	7 2/1	
TA 98	Glyphosate	33 µg	37.0	7,8	0.8	32 B M, 33 B M, 46 B M
	technical	100 µg	37.7	8.0	0.8	46 B M, 30 B M, 37 B M
	(NUP-05070)	333 µg	38.3	0.6	0.8	38 B M, 38 B M, 39 B M
	1112	1000 µg	32.7	2.5	0.7	33 B M, 30 B M, 35 B M
	0,000	2500 µg	22.7	6.1	0.5	28 B M, 24 B M, 16 B M
	18,00	5000 µg	17.70	3.8	0.4	22 B M, 15 B M, 16 B M
	Deionised water	141 184	45.3	4.5		50 B M, 45 B M, 41 B M
	Untreated Control	. O	43.0	2.6		46 B M, 41 B M, 42 B M
	(S 6) . S . S	7,000	<u> </u>			
TA 100 🕏	Glyphosate	33 µg	180.3	15.0	0.9	166, 179, 196
, 0	technical	100 µg	196.7	16.7	0.9	216, 187, 187
Chia.	Olympia Champa	333 µg	182.7	20.0	0.9	162, 184, 202
s property	Hub nagio	1000 µg	155.7	20.0	0.7	163, 133, 171
of Mer.	ither cattle this and	2500 µg	162.7	11.1	0.8	151, 173, 164
S , C), (, 110, 0, 10ch	5000 μg	130.0	6.1	0.6	123, 133, 134
900	Deionised water		211.0	28.7		225, 178, 230
e a	Untreated Control		157.7	20.0		137, 159, 177

Key to Plate Postfix Codes

В Extensive bacterial growth

Manual count

Study Code: RCC-CCR 1061402 Date Plated: 22/01/2007 Date Counted: 25/01/2007

With metabolic activation

							200	
	Strain	Compound	Dose level	Mean	Standard	Ratio	Individual revertant	
	-	,	per plate	revertants	Deviation	treated /	colony counts	
				per plate		solvent	(S)	
							85, 70, 85 70, 87, 73 59, 73, 69 65, 55, 72 41, 98, 65 52, 41, 56	
	WP2 uvrA	Glyphosate	33 µg	80.0	8.7	1.2	85, 70, 85	
		technical	100 µg	76.7	9.1	1.1	70, 87, 73	
		(NUP-05070)	333 µg	67.0	7.2	1.0	59, 73, 69	
		,	1000 μg	64.0	8.5	0.9	85, 70, 85 70, 87, 73 59, 73, 69 65, 55, 72	
			2500 µg	68.0	28.6	1.0	41, 98, 65	
			5000 µg	49.3	7.4	0.70	52, 41, 55	
		Deionised water	. 0	69.3	5.5	101	73, 72, 63	
		Untreated Control		66.0	11.1	86,71	64, 78, 56	
					<i>Y</i>	0, 06, 0	the of the	
!	TA 1535	2-AA	2.5 µg	301.0	44.7	36.1	254, 343, 306	
		2-AA	2.5 µg	186.0	13.0	36.1 7.8	171, 194, 193	
	TA 1537			4040 -	(V) (V)	22.4	1130, 983, 928	
	TA 98	2-AA	2.5 μg			70	1379, 1314, 1724	
	TA 100	2-AA	2.5 μg	1472.3 230.0	220.4 15.7	7.0 3.3	219, 223, 248	
•	WP2 uvrA	2-AA	10.0 µg	230.0	7 10:0	0 330.	219, 223, 240	
	Karata Danitira	e Controls aminoanthracene		الله الله	ed blish	10,000	Key to Plate Postfix Codes	
٠.	Ney to Positive	CORROIS		7,16,4	(0,10,	S) (9)	Extensive bacterial growth	
	2-AA 2-6	aminoaninracene	illi	inition	of Pine !	1/10	Manual count	
			(0)	9, 70, 4	10 11 1 C			
			60, 0	111.000	0, 0,			
			15, 6	JI 20. 1	1000			
		5.:	50 7	10, 10	is illo			
		.01	125 Jan	10, 40	HIL			
		01,10	21, 41, 00	10, 10,				
		7.18.01	oll oll	00,00				
		CO Still	4, 6,					
		18, 18, 10, 10,	10, 16	401				
•		Ch. Mo. Co.	1110 101 01	©,				
		(1); (1), (2)	SUL FILE					
	Š	1,000,11611	the M					
	Ex	187 OL 0, C)	, Wo,					
	Clar	1. "(4, "OL, 90,	d'					
	10× 6/1	The string we	5					
	6. 11	Mr. Mile & M. Chi.						
	the Con K.	711 0. 400						
Ď.		17 .:6						
. 6	1/6 Si	i, EHU						
A Jan	i Hi	0,						
SIL	elji,							
ILL	alle.							
10C)	cell							
600	0,3							
12 CO								
								,
								,
								•

Key 1	o	Positive	Controls

15 ANNEX II: COPY OF GLP CERTIFICATE OF ANALYSIS CERTIFICAT D'ANALYSE, CERTIFICATE OF ANALYSIS Cosate Tachnical (MJP 95070)

V/Ref.:

NiRéf.:

: Olyphosate Yachrical (NUP 05070) Note do produit

: 2006090)

1, 2006 Data de vernmet del : September 1, 2008 Expiry dels

Caractéristiques	Heir Mathode 7	idnités	Résullats
Characteristics	Test method ref	Unitis	Results
Abpect Accentance	Vieuel Visuel	-	Pozdre orlatalina bianche White crystal powder
Gyphopate)	СІРАС МТ 284/ТС/(М)-	%	97.7

This document is not the document the public of this document is not the document. Supplied the document is not the document. ici umi analyero in complance with Good Laboratory Practice shootings. The distribution and cases data for title calenda are located at Molarm SAS, Analytical Chemistry Laboratory,

Date : 93 navembre 2005 Date : November 89, 2006

Date de la copie certifiée : Date of certified copy: No remiser 13,2006

Opérateur : Operator:

Version n°G du 01/02/08

28, Boulevard Camélinet - 22 75 - 92233 GENNEYNLIBNS Cadex (France) Tél : 01 40 85 50 50 - Télécopleur : 01 47 92 25 45

Société par Actione Simpliffée au capital de 5 564 700 Euros R.C.S. Nanterne 552 026 068 - SIRST 552 028 060 00020 • N° TVA CEE : Pit. 08552029068

GAILLON 27500

Notre-Dame-de-la-Garenne Fel: 02 32 54 74 00 leur : 02 32 53 83 52

16 ANNEX III: COPY OF GLP CERTIFICATE

Hessisches Ministerium für Umwelt, ländlichen Raum und Verbraucherschutz

Gute Laborpraxis/Good Laboratory Practice

GLP-Bescheinigung/Statement of GLP Compliance (gemåß/according to § 19b Abs. I Chemikaliengesetz)

Eine GLP-Inspektion zur Überwachung der Einhaltung der GLP-Grundsätze gemäß Chemikaliengesetz bzw. Richtlinia 88/320/EG wurde durchgeführt in

Assessment of conformity with GLP according to Chemikaliengesetz and Directive 88/320/EEC at:

Prüfeinrichtung/Test facillity Prüfstandort/Test site

RCC Cytotest Cell Research GmbH RCO Cytotest Cell Research GmbH In den Leppsteinwiesen 19 64380 Roßdorf

(Unverwechselbare Bezeichnung und Adresse Unequivocal name and adress)

Priffungen nach Kategorien/Areas of Expertise (gemiß/according chem/w/V-GLP Nr. 5.3/OECD guidance)

2 Prüfungen zur Bestimmung der foxikologischen Eigenschaften 3 Prüfungen zur Bestimmung der erbgutverändernden Eigenschaften (in vitre und in vive) 8 Analytische Prüfungen an biologischen Materialien 9 Virussichafthetisprüfungen

2 Toxicity studies

3 Mutagenicity studies

8 Analytical studies on biological materials

validation studies

03.06.; 19.07.-22.07.2004 Datum der Inspektion/Date of Inspection (Tag Monat Jahr/day month year)

Die genannte Prufeinrichtung befindet sich im nationalen GLP-Überwächungsverfahren und wird regel-mäßig auf Einhaltung der GLP-Grundsätze überwacht. The above mentioned test facility is included in the national GLP Compliance Programme and is inspected on a regular basis.

Auf der Grundlage des Inspektionsberichtes wird hiermit bestätigt, dass in dieser Prüfeinrichtung die oben genamiten Prüfungen unter Einhaltung der GLP- Grundsätze durchgeführt werden können

Based on the inspection report it can be confirmed, that this test facility is able to conduct the aforementioned studies in compliance with the Principles of GLP.

Im Auftrag

Referent, Wiesbaden, den Wiesbaden, den 06. Januar 200 (Name und Funktion der verantwortlichen Person/ Name and function of responsible person)

Hess. Ministerium für Umwelt, ländlichen Raum und Verbraucherschatz, Mainzer Straffe 80 D65189 Wiesbaden

(Name und Adresse der GLP-Überwachungsbehörde/Name and address of the GLP Monitoring Anthonity)

D-85189 Wiesbaden, Malnzer Straße 80 D-corres wiespagen, manage on acceptance 0611, 81 50
Telefacc 0611, 81 51 94 1
E-Mall: poststelle@hmutv.hessen.de

D-65187 Wiesbaden, Hölderlinstraße 1-3 Telefon: 0611, 81 70 Telefax: 0611, 81 72 18 1

st4ecdr.doc