	77	
	Hi	n

REPORT

TYPE OF REPORT

JOB/PROJECT NO.: EHL 91200/91204, ML-91-434/ML-91-437

DATE: February 25, 1992

TITLE:

Mouse Micronucleus Study of

ROUNDUP® Herbicide Formulation

AUTHORS:

ABSTRACT:

The potential for ROUNDUP herbicide formulation to induce chromosomal effects was tested in a mouse bone marrow micronucleus assay. ROUNDUP herbicide formulation was administered by intraperitoneal injection to groups of male and female CD-1 mice at target doses of 140, 280 or 555 mg/kg body weight for the low, mid and high dose groups, respectively. Negative control groups were treated with vehicle only (0.9% saline; 10 ml/kg body weight) and positive control groups were treated with cyclophosphamide (40 mg/kg body weight). Mouse bone marrow from ROUNDUP herbicide formulation and vehicle control groups was sampled at 24, 48 and 72 hours after dosing. A single sampling time of 24 hours after dosing was used for the cyclophosphamide positive control group. Slides of bone marrow cells were made from five animals/sex/time point for each group and scored for the occurrence of micronucleated polychromatic erythrocytes (micronucleated PCE) and PCE/erythrocyte ratios.

The highest ROUNDUP herbicide formulation dose level, 555 mg/kg, was observed to be toxic to treated male and female mice and was clearly an appropriate maximum dose level for the micronucleus assay. This dose level was more than 80% of the combined LD50 estimated from toxicity rangefinder experiments (643 mg/kg) and induced a low incidence of deaths in high dose level male (2/18) and female (1/22) mice in the micronucleus assay. (continued on reverse side)

Herbicide Formulation

AUTHORS: TITLE:

NO.: MSL-1177t AU.

CONFIDENTIAL

is document is the property of Monsanto Company and the recipient is ponsible for its safekeeping and disposition. It contains CONFIDENTIAL *ORMATIC

Clinical signs of listlessness or unresponsiveness were observed in high dose level males and females up to 48 hours after treatment. Larger mean body weight decreases compared to control values were observed for high dose level males at 48 hours and 72 hours after dosing. In addition, a reduction in the mean PCE/erythrocyte ratio compared to control values was observed for the high dose level male group sacrificed at 48 hours after dosing. No clinical signs of toxicity were observed in the mid or low dose level groups, but a larger mean body weight decrease than control values was observed for the mid dose level male group sacrificed 72 hours after dosing.

ROUNDUP herbicide formulation did not induce increases in the frequency of micronucleated PCEs. No statistically significant increases in micronucleated PCE frequencies compared to control values were observed in any of the dose level groups at any of the time points. Significant increases in mean micronucleated PCE frequencies were observed for the cyclophosphamide treated animals demonstrating the ability of the study conditions to detect micronucleus induction.

The observations and findings of this study indicate that ROUNDUP herbicide formulation does not exhibit in vivo mammalian genotoxicity in mouse bone marrow cells under the experimental conditions of this study.

The test material, MON 12336, was tested in Ames/Salmonella plate incorporation assays using test strains TA98, TA100, TA1535 and TA1537 in the presence and absence of an Aroclor 1254-induced rat liver homogenate (S-9) activation system. The test chemical was observed to be insoluble at the maximum dose level for mutagenicity testing, 5 mg/plate. The test chemical was observed to be toxic in the absence of S9 activation for all bacterial strains and for TA100 in the presence of activation at the maximum treatment level. No significant mutagenicity was observed in either the initial assays or the subsequent confirmation assays. These results indicate that MON 12336 is not a mutagen in the Ames/Salmonella plate incorporation assay under the experimental conditions.

DISTRIBUTION

COPY NUMBER	ABSTRACT ONLY
1-3 Technical Reports Library/R2C 4 EHL Library 5 Original/EHL Archives 6-8 9	Onality Assurance/EHL&A3NF
10 11	EHL Professionals The idn of the control of the co
9 10 11 COMPANY CON	EHL Professionals
COMPANY CON	IFIDENTIAL

This report has been assigned to you. When it is no longer needed, you are responsible for returning it to:

Technical Reports Library - R2C

If you transfer it to anyone else, please let your librarian know, so the records can be changed.

MONSANTO COMPANY ENVIRONMENTAL HEALTH LABORATORY 645 S. NEWSTEAD ST. LOUIS, MISSOURI 63110

FINAL REPORT

Mouse Micronucleus Study of ROUNDUP® Herbicide Formulation

Study Numbers: ML-91-434/ML-91-437
EHL Study Numbers: 91200/0486

Authors:	h.D, Study Director	or and not idition
Study Director:	Jest Tudo dillout to an	, o
	Lie gill still sti	2/25/92
P	h.D, Study Director	Date
	and the second second	7-125/92
	B.A., Sr. Research Biologist	Date
	, , , , , , , , , , , , , , , , , , ,	2/25/92
	B.A., Research Biologist	Date
		2/25/92
	Ph. D., Manager	Date
Analytical, Biod	chemical and Cell Sciences	

EHL 91200/91204 Page 1

SUMMARY

The potential for ROUNDUP herbicide formulation to induce chromosomal effects was tested in a mouse bone marrow micronucleus assay. ROUNDUP herbicide formulation was administered by intraperitoneal injection to groups of male and female CD-1 mice at target doses of 140, 280 or 555 mg/kg body weight for the low, mid and high dose groups, respectively. Negative control groups were treated with vehicle only (0.9% saline; 10 ml/kg body weight) and positive control groups were treated with cyclophosphamide (40 mg/kg body weight). Mouse bone marrow from ROUNDUP herbicide formulation and vehicle control groups was sampled at 24, 48 and 72 hours after dosing. A single sampling time of 24 hours after dosing was used for the cyclophosphamide positive control group. Slides of bone marrow cells were made from five animals/sex/time point for each group and scored for the occurrence of micronucleated polychromatic erythrocytes (micronucleated PCE) and PCE/erythrocyte ratios.

The highest ROUNDUP herbicide formulation dose level, 555 mg/kg, was observed to be toxic to treated male and female mice and was clearly an appropriate maximum dose level for the micronucleus assay. This dose level was more than 80% of the combined LD50 estimated from toxicity rangefinder experiments (643 mg/kg) and induced a low incidence of deaths in high dose level male (2/18) and female (1/22) mice in the micronucleus assay. Clinical signs of listlessness or unresponsiveness were observed in high dose level males and females up to 48 hours after Larger mean body weight decreases compared to control values were observed for high dose level males at 48 hours and 72 hours after dosing. In addition, a reduction in the mean PCE/erythrocyte ratio compared to control values was observed for the high dose level male group sacrificed at 48 hours after dosing. No clinical signs of toxicity were observed in the mid or low dose level groups, but a larger mean body weight decrease than control values was observed for the mid dose level male group sacrificed 72 hours after dosing.

ROUNDUP herbicide formulation did not induce increases in the frequency of micronucleated PCEs. No statistically significant increases in

micronucleated PCE frequencies compared to control values were observed in any of the dose level groups at any of the time points. Significant increases in mean micronucleated PCE frequencies were observed for the cyclophosphamide treated animals demonstrating the ability of the study conditions to detect micronucleus induction.

alian genotox anditions of this and the state of the stat herbicide formulation does not exhibit in vivo mammalian genotoxicity in mouse bone marrow cells under the experimental conditions of this study.

Table of Contents	Page
SUMMARY	2
INTRODUCTION	5 Notes
MATERIALS	5 ¹⁵ 111
Test Materials Animals	6 Alion and
METHODS AND EXPERIMENTAL DESIGN	7
INTRODUCTION MATERIALS Test Materials Animals METHODS AND EXPERIMENTAL DESIGN Administration of Test Chemical Animal Observations Preliminary Experiments for Dose Selection Mouse Micronucleus Experiment Extraction of Bone Marrow Cells and Slide Preparation Scoring of Slides Statistical Analysis Data Evaluation RESULTS DISCUSSION CONCLUSION GENERAL INFORMATION SUPERVISORY PERSONNEL TRADEMARKS REFERENCES QUALITY ASSURANCE STATEMENT STATEMENT OF COMPLIANCE	7
Dose Selection	8
Mouse Micronucleus Experiment	8
Extraction of Bone Marrow Cells and	۵
Scoring of Slides	9
Statistical Analysis	10
Data Evaluation	11
RESULTS A SECTION OF THE SECTION OF	11
DISCUSSION	12
CONCLUSION (FO) SHIPPER TO THE SHIPP	13
GENERAL INFORMATION	14
SUPERVISORY PERSONNEL	14
TRADEMARKS	14
REFERENCES	14
QUALITY ASSURANCE STATEMENT	16
STATEMENT OF COMPLIANCE	17
	4.0
Appendix 1 Data Cultiflary	. •
Appendix II - Individual Test Results	27

INTRODUCTION

The study was designed to evaluate the potential of the test material, ROUNDUP herbicide formulation, to induce chromosome effects in an *in vivo* mammalian assay, the mouse bone marrow micronucleus assay.

The *in vivo* micronucleus assay has been found to be sensitive to a variety of chemical agents. The assay has been reviewed by the EPA Gene-Tox program (Heddle et al., 1983 and Mavournin et al., 1990). It is generally accepted that induction of micronucleus formation in the assay is indicative of either clastogenic effects or malsegregation of chromosomes. An advantage of this assay is that it evaluates effects on somatic cells of mice that are treated *in vivo* and thus is relevant to prediction of potential *in vivo* mammalian effects (MacGregor et al., 1987).

This study was conducted at the Monsanto Company Environmental Health Laboratory (645 S. Newstead, St. Louis, MO 63110). This study was sponsored by the Monsanto Agricultural Company. The protocols for studies 91200 (toxicity rangefinding study) and 91204 (micronucleus study) were signed by the study director on November 12, 1991 and November 19, 1991, respectively. Experimental work for study 91200 was initiated on November 13, 1991 and completed on November 20, 1991. Experimental work for study 91204 was initiated on November 19, 1991 and completed on December 26, 1991.

MATERIALS

Test Materials

Identification and composition of the test material samples are given below:

Name: ROUNDUP® Herbicide Formulation

Identification: Lot LUL-9101-2706F (initial toxicity

rangefinder experiment; study 91200)
Lot BS-110-388 (subsequent toxicity rangefinder experiments for study

91200 and main micronucleus

experiment, study 91204)

EHL Code: T910114 for LUL-9101-2706F

T910117 for BS-110-388

Percent Active

Ingredient: 31% glyphosate, acid equivalent (both

lots)

Sample storage: Samples were stored at room

temperature as advised by the sponsor.

Appearance: Samples were an amber liquid

Because of time constraints and problems with sample availability a separate lot of the test material formulated in the United States was used for the initial toxicity rangefinding experiment.

Subsequent experiments were conducted using a sample formulated in Brazil. Solutions or suspensions of the test material were made using 0.9% saline as the solvent on the day of treatment. The positive control used was commercial grade cyclophosphamide (Sigma Chemical Company, lot 19F-0254).

Animals

The animals used were eight to twelve week old male and female CD-1 mice (Source: Charles River Laboratories Inc., Portage, MI.). Upon receipt, the animals were quarantined for a minimum of seven days. Only animals considered to be normal were released from quarantine and used for testing. Prior to testing, the mice were

uniquely identified using ear tags and corresponding cage cards. The animals were housed two per cage prior to dosing and subsequently one per cage after dosing. The animals were housed in stainless steel cages with stainless steel mesh bottoms.

Animals were selected for the different test (or control) groups by a computer-generated randomization scheme. Water (supplied by the public water system of St.Louis, MO) was provided ad libitum via an automatic watering system. Purina Certified Laboratory Rodent Chow No. 5002 (Trademark of Purina Mills Inc., St. Louis, Mo.) was used as the diet and was provided ad libitum. This diet has been determined to be nutritionally acceptable for the maintenance of laboratory rodents and has been certified by the manufacturer not to contain contaminants likely to interfere with the study. The animals were housed in rooms designed to routinely maintain a 12-hour light cycle, a temperature between 64 and 79 °F, and relative humidity between 40 and 70%. There were no excursions in animal room environmental conditions which had any obvious impact on the results of the study.

METHODS AND EXPERIMENTAL DESIGN

Administration of Test Chemical

Animals were treated by a single intraperitoneal injection of 0.9% saline (vehicle control, 10 ml/kg body weight), ROUNDUP herbicide formulation in 0.9% saline (10 ml of solution/kg body weight) or cyclophosphamide in 0.9% saline (positive control, 10 ml of solution/kg body weight).

Animal Observations

During the study, all animals were observed for visible toxic effects and mortality immediately after dose administration, 3-5 hours after dosing, and daily thereafter for up to 72 hours after treatment. Animals were weighed at the time of treatment (all experiments)

and at the time of sacrifice for bone marrow extraction (main experiment).

Preliminary Experiments for Dose Selection

In the initial rangefinding experiment, two mice of each sex were treated by intraperitoneal injection with the test material at doses Vehicle control animals were of 1000 and 5000 mg/kg body weight. dosed with an appropriate volume of 0.9% saline. Based on the results of the first experiment doses of 250, 500, 750 and 1000 mg/kg body weight were tested in a subsequent rangefinding experiment. A third experiment was conducted with doses of 600, 700 and 800 mg/kg body weight. An additional animal per sex was added to the second rangefinding experiment to evaluate the effect of the test doses on the ability to score for PCE/total erythrocyte ratio. Animals added for evaluating treatment effects on slide quality were sacrificed approximately 24 hours after treatment.

Mouse Micronucleus Experiments

Dose levels for the main study were selected based on toxicity rangefinding study data. The maximum dose selected for testing in the micronucleus experiment was 555 mg/kg body weight (more than 80% of the combined calculated LD50 of 643 mg/kg). Other doses selected were approximately 1/2 (280 mg/kg body weight) and 1/4 (140 mg/kg body weight) of the maximum dose. Doses were administered once. Groups of at least fifteen males and fifteen females were used for each dose level. Animals were sacrificed for micronucleus evaluation (five animals/sex/group) at 24, 48 and 72 hours after dosing. Vehicle control groups of fifteen males and females were treated with 0.9% saline only. Concurrent positive control groups of five males and five females were treated with 40 mg/kg cyclophosphamide and sacrificed 24 hours after treatment. Design of the mouse micronucleus experiment is summarized in Table 1.

Table 1 Design of the Mouse Micronucleus Assay

Des	ign of	the Mo	Table ouse M		ıcleus	Assay	M.
Treatment Group		per of Treated		e Speci		be Sacril ne Follov nt	
	Male	Female	24 hou Male i	ırs Female	48 ho Male	ours Female	72 hours Male Female
High Dose *	18	22	5	5	5	5	5 CB 5 15 110 110 110
Mid Dose	15	15	5	5	5	5	5 5 15
Low Dose	15	15	5	5	5	5	5,112,05,11
Vehicle Control	15	15	5	5	5	5,00	5 6 5 5 S
Positive Control	5	5	5	5	-	"FO, CO,	Set Me

^{*} Additional animals added to the high dose to assure adequate survivors at time of sacrifice for bone marrow extraction.

Extraction of Bone Marrow Cells and Slide Preparation

All animals were sacrificed by cervical dislocation and their femora were removed. Each bone was opened at the end and the bone marrow was flushed with approximately 2 ml of fetal bovine serum into a centrifuge tube. Bone marrow from both femora of each animal were pooled for slide preparation. The suspension was centrifuged to remove the serum. Portions of the remaining cells were placed on clean glass microscope slides and smears were prepared. Two slides were initially prepared for each sample and the remaining cell suspension was stored refrigerated to prepare additional slides if needed. Following preparation of the smears the slides were allowed to air dry overnight. The slides were stained using a HemaTek II slide staining machine and a Wright-Giemsa Stain Pak which includes stain, buffer and rinse solutions.

Scoring of Slides

Slides of bone marrow cells were coded prior to distribution and slides were scored without knowledge of the treatment or control group to which the slides belonged. For each animal, two scorers evaluated: a) 500 total erythrocytes for polychromatic erythrocytes (PCEs) and normochromatic erythrocytes (NCEs) and b) 500 PCEs for micronucleated polychromatic erythrocytes (MN PCEs). PCEs and NCEs were distinguished by different staining properties. Micronuclei were identified as uniform, darkly stained, round or oval shaped bodies found in the cytoplasm of PCEs. Bodies in PCEs which were refractile, improperly shaped or stained, or which were not in the focal plane of the cell, were not scored as micronuclei. PCEs containing more than one micronucleus were scored as a single micronucleated PCE. In a few cases significant discordance in MN PCE frequency were initially observed between two slide scorers (e.g. a difference of 4 or more MN PCE per 500 PCEs scored where one or both MN PCE frequencies were less than 10/500). In these cases slides were rescored to determine if the discordance was reproducible and the rescored values were used for reporting and The slides to be rescored were evaluated without analysis. knowledge of the treatment group to which the slides belonged. Scoring data were used to calculate, for each animal, the ratio of PCEs to total erythrocytes (PCEs plus NCEs) per 1000 erythrocytes and the number of MN PCEs per 1000 PCEs.

Statistical Analysis

LD50 estimates were calculated using the Probit method on toxicity rangefinder data. The individual test animal was used as the individual unit for analysis of micronucleated PCE frequency and PCE/erythrocyte ratio and body weight change. Micronucleated PCE frequencies observed for each animal were transformed as the square root prior to analysis (Snedecor and Cochran, 1967; MacGregor et al., 1987). PCE/total erythrocyte ratios were not transformed. Dunnett's test (one sided) was used for comparison of treatment group and positive control values with vehicle control values (Dunnett, 1955). A critical value of p≤0.05 was used for statistical significance.

Data Evaluation

To determine whether a statistically significant response is treatment related the following criteria are considered: (a) whether there are dose and time-dependent effects that are consistent with a treatment-induced response and (b) the degree of the response in relation to both concurrent and historical negative and positive control data.

RESULTS

Results of the rangefinding experiments are summarized in Appendix I, Table 1. In the rangefinding experiments ROUNDUP herbicide formulation was found to be toxic to male CD-1 mice at 600 mg/kg body weight and greater as indicated by clinical signs of toxicity and death and to be toxic to female mice at 500 mg/kg body weight and greater as indicated by clinical signs of toxicity. The test material caused deaths to the females at 700 mg/kg body weight and greater. The combined LD50 was determined to be 643 mg/kg body weight (Probit).

Based on these results, 555 mg/kg (approximately 86% of the combined LD50 value) was selected as a maximum dose that would insure a reasonable probability of observing signs of toxicity but allow survival of the treated animals through the 72 hour time point. Two additional lower doses (140 and 280 mg/kg body weight) were also selected for testing.

Results of the micronucleus experiment are summarized in Appendix I, Tables 2 - 5 with individual animal data in Appendix II, Tables 1-3. In the main micronucleus experiment, ROUNDUP herbicide formulation was toxic to the male and female mice dosed at the 555 mg/kg treatment level as evidenced by clinical signs and death. Three deaths were observed in the high dose level group (2/18 males and 1/22 females). No deaths were observed in other treatment or control groups. Clinical signs of toxicity (listlessness and/or

unresponsiveness) were observed in high dose males and females up to 48 hours after dosing. At the 72 hour time point all remaining high dose level male and female mice appeared normal. All animals in the mid and low dose groups appeared normal throughout the experiment. All positive and vehicle control animals also appeared normal throughout the experiment.

Statistically significant decreases in mean body weight were observed for the high dose male group animals sacrificed at the 48, and 72 hour time points. A statistically significant decrease in mean body weight was observed for the male mid dose group sacrificed at the 72 hour time point. No statistically significant decreases in mean body weight were observed for any of the other dose groups.

A statistically significant decrease in the PCE/total erythrocyte ratio was observed for the high dose male group sacrificed at the 48 hour time point. No statistically significant decreases in mean PCE/total erythrocyte ratios were observed for any of the other treatment groups.

No statistically significant increases in the mean micronucleated PCE frequencies were observed in any ROUNDUP herbicide formulation treated groups when compared to corresponding vehicle control groups. The positive control (cyclophosphamide) yielded expected positive responses in micronucleated PCE frequency indicating the adequacy of the experimental conditions.

DISCUSSION

ROUNDUP herbicide formulation was tested in a micronucleus assay in male and female CD-1 mice at dose levels of 140, 280 and 555 mg/kg with sacrifice times of 24, 48 and 72 hours. The high dose level was an appropriate maximum level as judged by several criteria. The high dose level was more than 80% of the estimated LD50 and induced a low level of lethality. Clinical signs of toxicity were observed in the treated high dose level male and female groups

and there were statistically significant decreases in mean body weight in high dose level male groups sacrificed at 48 and 72 hours after dosing. Additionally, a statistically significant decrease in the PCE/total erythrocyte ratio observed for the high dose male group sacrificed at the 48 hour time point suggests effects on the bone marrow.

At the dose levels tested, which included an appropriate maximum dose level, no statistically significant increases in the number of micronucleated PCEs were observed in the male or female groups sacrificed at the 24, 48 or 72 hour time points. The positive control, cyclophosphamide, yielded the expected positive responses in micronucleus induction indicating the adequacy of the experimental conditions.

CONCLUSION

Based on the observations and findings of this study, it is concluded that ROUNDUP herbicide formulation is not genotoxic *in vivo* in mouse bone marrow cells under the experimental conditions of the study.

GENERAL INFORMATION

The protocol, raw data, and final report for this study are located in the archives of the Environmental Health Laboratory.

D.V.M., Dipl. A.C.V.P.

Jy and Research Studies Director

Ph.D.

Director, Environmental Health Laboratory

TRADEMARKS

he following registered trade

FM For testing efficiency, the positive and saline vehicle control

Monsanto Agricultural Company, St. Louis, MO ROUNDUP

Purina Mills, Inc., St. Louis, MO

CD-1 Mice Charles River Laboratories Inc.,

Portage, MI.

REFERENCES

Dunnett, C.W (1955). A multiple comparison procedure for comparing

several treatments with a control. Jour. Am. Stat. Assoc. 50, 1096-1121.

Heddle, J. A., Hite, M., Kirkhart, B., Mavournin, K., MacGregor, J.T., Newell, G.W. and Salamone, M.F. (1983). The induction of micronuclei as a measure of genotoxicity. A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutation Res. 123, 61-118.

MacGregor, J.T., Heddle, J.A., Hite, M., Margolin, B. H., Ramel C., Salamone, M.F., Tice, R.R. and Wild, D. (1987). Guidelines for the conduct of micronucleus assays in mammalian bone marrow erythrocytes. Mutation Res. 189, 103-112.

Mavournin K.H., Blakey D.H., Cimino M.C., Salamone M.F., and Heddle J.A. (1990). The in vivo micronucleus assay in mammalian bone marrow and peripheral blood. A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutation Res. 239, 29-80.

Snedecor, G.W. and Cochran, W.G. (1967). Statistical Methods, 6th edition, 223-226 and 325-327, lowa State Press, Ames, IO.

S&EH QUALITY ASSURANCE AUDIT STATEMENT

Study Number:

91200/91204

ML-91-434/ML-91-437

Protocol Amendments:

None

Study Title:

Mouse Micronucleus Study of Roundup®

Herbicide Formulation

Dates of Inspections and Communication of Findings:

91200

Results:

The Quality Assurance review indicates the final report accurately presents the raw data as developed during the study. There appears to be no significant deviation from applicable GLF regulation that adversely affected study or integrity.

EBRUARY 25, 1992

Statement of Compliance

To the best of our knowledge, these studies were conducted in general accordance with the U.S. Environmental Protection Agency Good Laboratory Practice (GLP) Standards; the Japanese Ministry of Agriculture, 1. Characterization of test and control substances was not conducted according to the standards as part of the standards.

2. Test and control substances.

- 3. The stability of test and control substances, neat and after mixing with carrier were not determined.

 Mixtures of test substances with prepared on prepared on each day of use.

10 10 10 10 10 10 10 10 10 10 10 10 10 1	
Study Director	
ELA CLEANING OF GENTLESA	
blicate this the	
2/25/92	
L'aboratory Management Date	
Chile Street	

APPENDIX I **Data Summary**

Summary of Toxicity Rangefinder Results for

Summary of Micronucleus Assay Results for Table 2 ROUNDUP Herbicide Formulation: Mean Body Weight Change and Animal Observations. Summary of Micronucleus Assay Results for Table 3 ROUNDUP Herbicide Formulation: PCE Ratio and Micronucleus Data for Low Dose Animals. Table 4 Summary of Micronucleus Assay Results for ROUNDUP Herbicide Formulation: PCE Ratio and Micronucleus Data for Middle Dose Animals. Table 5 🔗 Summary of Micronucleus Assay Results for ROUNDUP Herbicide Formulation: PCE Ratio and Micronucleus Data for High Dose Animals.

ROUNDUP Herbicide Formulation.

Table 1

APPENDIX I - TABLE 1 SUMMARY OF TOXICITY RANGEFINDER RESULTS FOR ROUNDUP HERBICIDE FORMULATION

Dose mg/kg				Nι	ımbe	r of	Dea	ths		101		of	10. et 0/0,		
		ated	0-5 Hou		Day 1	,	Day 2	/	Day 3	/	Day	900	Tota	al m	et owner.
	М	F	M	F	M	F	М	F	M	S. E.S.	Z MOI	P	Mis	eF o	Combined a
050									eile	Pilo	Chilo	is si	ilie.	9	0/0
250	3	3	_	_		_		10 %	11800 C		JI - Oct	<u> </u>	0	0	0/6
500	3	3		_	_		ili <u>j</u>	- Hile	, , , , , ,	0 4	CO. 7.	110	0	0	0/5 b
600	2	2		_	_	5	(0)	9 . 	10 100	ازنۍ	7 960		2	0	2/4
700	2	2				. 260	SO,	(<u>a)</u>	iin <u>.</u> Pi	1.16	51	_	2	1	3/4
750	3	3		_	20	No Nic	10	JUCI.	de de	201	_	1	3	2	5/5 b
800	2	2	_		(S),	39. 19.	in of	200	0.00		_		1	2	3/4
1000	5	5	2	200	<u>,2</u>	2	ر ی 'برد کانی بازد	5 4	3				4	4	8/10
5000	2	2	25	5)(ili z IL 90	Dilio	1. <u>91</u>	S. O.	_	_	-	_	2	2	4/4

a Number of deaths I total number of animals treated.

b One animal sacrificed for erythrocyte evaluation at 24 hours after dosing

APPENDIX I - TABLE 1 (continued) SUMMARY OF TOXICITY RANGEFINDER RESULTS FOR ROUNDUP HERBICIDE FORMULATION

Dose (mg/kg)	Observations - Males
250	Observations - Males All animals appeared normal through day four. All males appeared normal through day four. One male appeared normal immediately after dosing, appeared listless at the 3-5 hour observation and through day 2. This opinion appeared upresponding an day 3 and was found, doction day 4. The second male appeared normal
500	All males appeared normal through day four.
600	One male appeared normal immediately after dosing, appeared listless at the 3-5 hour observation and through day 2. This animal appeared unresponsive on day 3 and was found dead on day 4. The second male appeared normal immediately after dosing, appeared listless at the 3-5 hour observation and through day 1. This animal appeared unresponsive on day 2 and was found dead on day 3
700	One male appeared listless immediately after dosing and through day 1. This animal was found dead on day 2. One male appeared listless immediately after dosing, appeared listless at the 3-5 hour observation and through day 2. This animal appeared unresponsive on day 3 and was found dead on day 4
750	One male appeared unresponsive through day 1 and was found dead on day 2. One male appeared listless immediately after dosing, was unresponsive at the 3-5 hour observation and was found dead on day 1. The third treated male was listless through the 3-5 hour observation and was found dead on day 1.
	Chairing to the state of the st
800	One treated male appeared listless immediately after dosing, was unresponsive at 3-5 hours after dosing and was found dead on day 1. The remaining male appeared listless immediately after dosing and through day 2, then appeared normal through day 4.
1000	In the initial rangefinding experiment, the treated males died immediately after dosing. In the second rangefinding experiment one treated male was listless through the 3-5 hour observation and was found dead on day 1. One male appeared listless immediately after dosing, was unresponsive at the 3-5 hour observation and was found dead on day 1. The third treated male appeared normal through day 4.
5000	In the initial rangefinding experiment, the treated males died immediately after dosing.

APPENDIX I - TABLE 1 (continued) SUMMARY OF TOXICITY RANGEFINDER RESULTS FOR ROUNDUP HERBICIDE FORMULATION

Dose (mg/kg)	Observations - Females All animals appeared normal through day four. One treated female appeared listless through 24 hours, then appeared normal through day four.
250	All animals appeared normal through day four.
500	One treated female appeared listless through 24 hours, then appeared normal through day four. The other two treated females appeared normal through day four.
600	The two treated females appeared listless immediately after dosing, then appeared normal at 3-5 hours through day four.
700	One female appeared listless immediately after dosing and at 3-5 hours. This animals was found dead on day 1. The second treated female appeared listless immediately after dosing and through day 3, then appeared normal on day four.
750	One female appeared listless through 24 hours and then was sacrificed for erythrocyte ratio evaluation. One animal appeared normal through day 1, appeared unresponsive on day 2 and was found dead on day 3. The third treated female appeared normal through day 3 and was found dead on day 4.
800	One female appeared listless immediately after dosing and at 3-5 hours. This animal was found dead on day 1. The second treated female appeared listless immediately after dosing and through day 1. This animal was found dead on day 2.
1000	In the initial rangefinding experiment, the treated females died immediately after dosing. In the second rangefinding experiment, one female appeared normal immediately after dosing, was unresponsive at the 3-5 hour observation and was found dead on day 1. One female appeared listless immediately after dosing, was unresponsive at the 3-5 hour observation and was found dead on day 1. The third treated female appeared normal immediately after dosing, appeared listless at 3-5 hours and on day 1, the appeared normal through day 4.
5000	In the initial rangefinding experiment, the treated females died immediately after dosing.

APPENDIX I - TABLE 2
SUMMARY OF MICRONUCLEUS ASSAY RESULTS FOR ROUNDUP HERBICIDE FORMULATION
MEAN BODY WEIGHT CHANGE AND ANIMAL OBSERVATIONS

								ocumes. and u	
Dose	Sex	Numbe Treate			Mean		ard Devi	nge (g) ation	Deaths
			24	Hours	48 Ho	ours	72 H	ours	
Saline Vehicle	Male	15	- 0.5	± 0.6	- 0.4	± 0.7	- 0.8	± 2.0	0
Control	Female	15	- 1.2	± 0.3	- 0.8	£ 0.3	0.4	± 0.4	0
Roundup	Male	15	- 0.8	± 0.5	.)) -:0.9	± 0.7	- 0.8	± 0.2	0
140 mg/kg	Female	15	- 1.5	± 0.8	(tell-0.3)	OLL R. Tiple	- 0.4	± 0.5	0
Roundup	Male	15	- 0.8	£ 0.3	- 0.8	± 0.7	- 1.6	± 0.8 **	0
280 mg/kg	Female	15	- 0.9	± 0.6	0.4	± 0.3	- 0.1	± 0.7	0
Roundup	Male	18	. 2.7	± 4.4	2.4	± 1.1 *	* - 1.2	± 1.3 *	2
555 mg/kg	Female	22			- 0.8	<u>+</u> 1.2	- 0.2	<u>+</u> 2.0	1
Cyclo-	Male	15 5 m	ⁱ €.1. 3 5	± 0.6					0
phosphamide (40 mg/kg)	Female	ieni 5elic	- 1.3 - 0.6	± 0.6 ± 0.4					0

^{*}p \leq 0.05; ** p \leq 0.01 by one-sided t-test.

APPENDIX I - TABLE 2 (continued) SUMMARY OF MICRONUCLEUS ASSAY RESULTS FOR ROUNDUP HERBICIDE FORMULATION ANIMAL OBSERVATIONS

	74 1111 - 4 000-11111110110
Dosing Observations:	One high dose (555 mg/kg) male and nine high dose females appeared listless immediately after dosing.

3-5 hour observations:	One high dose female was found dead, one high dose male appeared unresponsive, eleven high dose males
	and five high dose females appeared listless

24 hour observations:	One high dose male was found dead, twelve high dose males, and five high dose females appeared listless
	One high dose male was found dead, twelve high dose males, and five high dose females appeared listless

48 hour observations:	One high dose male was found dead, two high	gh dose males appeared unresponsive and four high dose males
	appeared listless.	1/12 1/10 1/0, 100 01, 1/2

72 hour observations:	All remaining high dose male and	female mice appeared normal.
-----------------------	----------------------------------	------------------------------

All animals in the mid (280 mg/kg) and low (140 mg/kg) dose groups appeared normal throughout the experiment. All positive and vehicle control animals also appeared normal throughout the experiments. out the experiments.

Onsequently, any little declination, the declination of the declina

APPENDIX I - TABLE 3 SUMMARY OF MICRONUCLEUS ASSAY RESULTS FOR ROUNDUP HERBICIDE FORMULATION PCE RATIO AND MICRONUCLEUS DATA FOR LOW DOSE ANIMALS

Time Hour		Number	M	lean PC						9				ited PCE dard Dev) P(Œ
	-,			ehicle ontrol	Te Ma	st ateri	al	Pos	itive ntrol ± 0.06 ± 0.04	eight	V _C	hicle ontrol	nel d	est Material		ositi Conti	
24	Male	5	0.43		0.49	±	0.03	0.49	± 0.06	obelg 9	31.4	± 0.5	0.8	± 0.8	29.2		8.4**
	Female	5	0.48	± 0.05	0.52	±	0.08	0.51	± 0.04	JIST SKILL	0.8	¢ 1.1	1.0	± 1.4	25.6	±	7.8**
8	Male	5	0.49	± 0.04	0.50	±	0.05	in O	elles d'es	Jijo, be	d.2	± 2.2	1.6	± 2.5			
	Female	5	0.53	± 0.07	0.49	±	0.03	Oly Sil	ingel do	it in oud	0.8	± 0.8	1.0	± 1.2			
72	Male	5	0.54	± 0.09	0.61	±.;	0.11	70, 631	Or will	1/100	2.4	± 1.1	0.8	± 0.4			
	Female	5		± 0.10	0.59	01.00 01.00	0.07	estogui	itive ntrol ± 0.06 ± 0.04	Ų	1.8	± 1.3	1.6	± 0.5			
['] p ≤	3 0.05; **	p ≤ 0.01	by one	-sided t-	test. S	qua	001 e1	t trans	formed d	ata use	d for s	statistica	l anal	ysis of m	nicronu	cleat	ed PC
						. 67	~~	1 0									
			-O ⁸	ity of ray	Wole,	900	SUI WS	3									
			re propre	rentines	ingitor,	3113	entine	53									
		,o ^x	ne docu	Siglo Lings	inis of this	SULL	ent no	57									
		antis Potiti	us gocul	A SUN DIE	of this d	ochu gis go	entino	3									
	_c\ ³	Rent is roth	ne docu	A. Styling	of this of	ochu,	eri ma	7									
	This docu	p ≤ 0.01	ne docut	A SUN PIL	of this of	ochu.											

APPENDIX I - TABLE 4 SUMMARY OF MICRONUCLEUS ASSAY RESULTS FOR ROUNDUP HERBICIDE FORMULATION PCE RATIO AND MICRONUCLEUS DATA FOR MIDDLE DOSE ANIMALS

Time Hour	est e Sex s)	Number	M	ean PCE ±	Stand		-	-		11		11, ' 6	ted PCE dard Dev) P(DE
	•			ehicle	Te	st		Pos	sitive	Mir O CO	ehicle	Mel	est	Р	ositi	
			С	ontrol	Ma	ateri	al	Co	ntrol	9 40 6	ontrol	O, III	Material	C	onti	rol
4	Male	5	0.43	± 0.04	0.50	±	0.04	0.49	± 0.06	300	± 0.5	2.2	± 0.8	29.2	±	8.4**
	Female	5	0.48	± 0.05	0.52	±	0.06	0.51	±0.04	8.0 O.8	±21.1	0.2	± 0.4	25.6	±	7.8**
8	Male	5	0.49	± 0.04	0.48	±	0.06	no	is les d'es ligh	O 12	± 2.2	1.0	± 1.2			
	Female	5	0.53	± 0.07	0.56	±	0.03	O'N'S	ingel do hit in	8.0 0.18	± 0.8	0.6	± 0.9			
2	Male	5	0.54	± 0.09	0.59	± .	0.11	70/ Kg	ion with the	2.4	± 1.1	1.4	± 1.7			
	Female	5	0.52	± 0.10	0.61	(4) (4)	0.10	Colognia Colognia	sitive ntrol ± 0.06 ± 0.04	1.8	± 1.3	1.0	± 1.0			
) 	3		<u>~</u>		-1-11-11					1.50
p ≤	0.05; **	p ≤ 0.01	by one	-sided t-t	est. S	qua	re roo	t trans	formed data u	used for a	statistica	i anai	lysis of m	icronu	cleat	led PCE
p ≤	0.05; **	p ≤ 0.01	by one	-sided t-t	est. S	gieżiji Gua		t trans	sformed data L	used for a	statistica	i anai	lysis of m	icronu	cleat	led PCE
p ≤	0.05; **	p ≤ 0.01	by one	-sided t-t	est. S	dna Serii	re roo	t trans	siormed data t	used for a	stausuca	i anai	lysis of m	icronu	cleat	led PCE
p ≤	0.05; **	p ≤ 0.01	by one	-sided t-t	est. S	qua South	re roo	t trans	siormed data t	used for 9	statistica	i anai	lysis of m	icronu	cleat	IEG PCE
p ≤	0.05; **	p ≤ 0.01	by one	-sided t-t	est. S	qua Securiti		t trans	siormed data t	used for 9	statistica	I anai	lysis of m	icronu	cleat	IOO PCE
p ≤	0.05; **	p ≤ 0.01	by one	-sided t-t	est. S	qua Sistiff Si	re roo	t trans	siormed data t	used for s	statistica	i anai	lysis of m	icronu	cleat	IOO PCE
p ≤	0.05; **	p ≤ 0.01	by one	-sided t-t	est. S	qua Setti Se	re roo	t trans	siormed data t	used for s	statistica	i anai	lysis of m	icronu	cleat	IOO PCE

APPENDIX I - TABLE 5 SUMMARY OF MICRONUCLEUS ASSAY RESULTS FOR ROUNDUP HERBICIDE FORMULATION PCE RATIO AND MICRONUCLEUS DATA FOR HIGH DOSE ANIMALS

		Number	M	lean PCE ±		_							VII. 1 6	ated PCE dard De) P(Œ
	-,			ehicle ontrol	Te Ma	st ater	ial	Pos	itive ntrol	6 property		ehicle ontrol	of its	Test Material	P	ositi Conti	
24	Male	5	0.43	± 0.04	0.40	±	0.05	0.49	± 0.0	6,000 H	1.4	± 0.5	1.8	± 3.0	29.2	±	8.4**
	Female	5	0.48	± 0.05	0.51	±	0.05	0.51	±0.0	& Pulaticki	0.8	±€1.1	1.4	± 0.9	25.6	±	7.8**
8	Male	5	0.49	± 0.04	0.37	±	0.02	**0	"sle	Je ollow	1.2	± 2.2	1.6	± 1.5			
	Female	5	0.53	± 0.07	0.49	±	0.08	917.5	nuger	Holy the	8.0	± 0.8	8.0	± 1.3			
2	Male	5	0.54	± 0.09	0.56	±	0.07	nc, 10	1100	itil itec	2.4	± 1.1	2.0	± 0.7			
	Female	5	0.52		0.56		0.17	166 C.	orients	6 CONTROLLER	1.8	± 1.3	0.2	± 0.4			
	(0.05; ** ¡		by one	-sided t-t	est. S	qua	re roo	t trans	formed	l data use	ed for	statistica	al ana	lysis of m	nicronu	cleat	ed PCE
	This dock		Nor	self was	Wolfol.	12 '4 , 90	ueyru.										
		Š	ine 90cl	ili knjeto		70C/1											
		is no	"Le	19.30	Of AMI												
	ري	Mel	aller														
	. 6 800	~ O	S														

APPENDIX II Individual Test Results

- Table 1 Body Weight Table for Micronucleus Experiment with ROUNDUP Herbicide Formulation
- Table 2 Slide Scoring Data for the Micronucleus Experiment with ROUNDUP Herbicide Formulation (PCE/erythrocyte Ratio and Micronucleated PCE's)
- Table 3* Animal Number Assignments for the Micronucleus Experiment with ROUNDUP Herbicide Formulation
- *Note: Animals were initially assigned individual animal lot numbers and those selected for study were subsequently also assigned study numbers. Appendix II, Table 1 reports individual weight data using the assigned study number (without the study number prefix). Slide scoring data were collected using the animal lot number to preclude knowledge of the treatment or control group by the scorers and the data in Appendix II, Table 2 are presented using the individual animal lot numbers (without the lot number prefix). Appendix II, Table 3 presents the lot number and corresponding assigned study number for the individual animals in Appendix II, Tables 1 and 2 to permit comparison of the data on an individual animal basis.

APPENDIX II - TABLE 1 BODY WEIGHT TABLE FOR THE MICRONUCLEUS EXPERIMENT WITH ROUNDUP® HERBICIDE FORMULATION

24 HOUR MALES

======================================	Anim		Time			Body Weight (g)	
	Numb	9 9 F	of Sacrifice (hr)	4	Pretest	Figal	Difference
10 ml/kg	M91	001	24		32.7	,;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	-0.2
Sterile Saline	M91		2 4		31.3	30.2	-1.1
Males	M91		24		35.1	2 x 33.9 x	-1.2
	M91	004	24		30.8	33.9	-0.3
	M 91	005	24		32.0 35.8 38.2 35.0	30.2 33.9 30.5 32.3 34.9	0.3
I40 mg/kg	M01	001	24		35.8	34.9	-0.9
ROUNDUP ®	M01	002	24		38.20	36.6	-1.6
Males	M01	003	24		35.0	34.7	-0.3
	M01	004	24	19	32.5	31.9	-0.6
	M 01	005	24	dilius	(S) 33.10 10	32.5	-0.6
278 mg/kg	M02	001	24	4/3/3/3/	11 28.0 Miles	26.8	-1.2
ROUNDUP®	M02	002	24	5 150	32.7	32.1	-0.6
Males	M02	003	24	1371	33.5	32.8	-0.7
	M02	004	(°) (°)24°	,00	₹ 30.1	29.5	-0.6
	M02	005	Ct 10 11/24	.xs	31.0	30.1	-0.9
555 mg/kg	M03	001 101	600.01	of legit	43.8	33.3	-10.5
ROUNDUP®	M03	0020 %	24	ille	30.8	29.6	-1.2
Males	M03	004	JI 240	3	30.2	30.4	0.2
	M03	005	24		31.1	30.8	-0.3
Q ^r	M03	002 004 005 006	24		30.8 32.0 35.8 38.2 35.0 32.5 33.1 28.0 32.7 33.5 30.1 31.0 43.8 30.8 30.2 31.1 32.4	30.6	-1.8
10 mg/kg Cyclophosphamide	M04	001	24		33.8	32.4	-1.4
10 mg/kg Cyclophosphamide Males	M04	002	24		35.6	33.6	-2.0
Males	M04	0030	24		33.9	32.5	-1.4
Wey.		004	24		36.3	35.1	-1.2
chi. cdn.	M04	005	24		34.6	34.2	-0.4

Hours after treatment.

APPENDIX II - TABLE 1 (continued) BODY WEIGHT TABLE FOR THE MICRONUCLEUS EXPERIMENT WITH ROUNDUP® HERBICIDE FORMULATION 48 HOUR MALES

Group	Animal	Time		Body Weight (g)	•
	Number	of Sacrifice a (hr)	Pretest	JON Final Color	Difference
10 ml/kg	M91 006	48 48 48 48 48 48 48 48 48 48 48 48	33.3	32.3 32.6 35.6	-1.0
Sterile Saline	M91 007	48	3,328	32.6	-1.2
Males	M91 008	48	35.8	35.6	-0.2
	M91 009	48	33.0	32.7	-0.3
	M91 010	48	31,7° 10	32.2	0.5
	r.	(2)	i cinconnienti	,	
140 mg/kg	M01 006	48	32,9	32.5	-0.4
ROUNDUP ®	M01 007	48 (17) (17)	34,00	33.7	-0.3
Males	M01 008	4.8	35.8	34.1	-1.7
	M01 009	48,67	29.4	28.7	-0.7
	M01 010	1048	37.9	36.3	-1.6
		Josephis Wayno	Chis Coll.		
278 mg/kg	M02 006	(5) (1948) (10° (1)	34.5	32.5	-2.0
ROUNDUP ®	M02 007	(0) 11 10 11 4 8 (8° C)	34.0	33.6	-0.4
Males	M02 008), ieo 700, 48, 1, 16, 10,	30.4	30.1	-0.3
	M02 009	317 6 3148	29.7	29.2	-0.5
	M02 010	48 11	33.5	32.5	-1.0
	io tes tes	lo, grachilla,			
555 mg/kg	M03 007	(6) 60 (4) 8	32.1	28.7	-3.4
ROUNDUP ®	M03 008	11 1/11 1/11 48	30.0	27.3	-2.7
Males	M03 012	48 48 48 48 48 48 48 48 48 48 48 48 48	33.7	31.9	-1.8
	M03 015	48	40.2	39.4	-0.8
17/2:	M03 012 M03 015 M03 017	48	33.1	29.6	-3.5

A Hours after treatment.

APPENDIX II - TABLE 1 (continued) BODY WEIGHT TABLE FOR THE MICRONUCLEUS EXPERIMENT WITH ROUNDUP® HERBICIDE FORMULATION 72 HOUR MALES

		=====			=======================================		==
Group	Anim Numi		Time of		Body Weight (g)		
	Iquiin	J 0 1	Sacrifice * (hr)	Pretest	Plot ion of	Difference	
10 ml/kg	M91	011	72	26.2	30.5 29.5 28.2	4.3	
Sterile Saline	M91	012	72	29.9	29.5	-0.4	
Males	M91	013	72	27.9	28.2	0.3	
	M91	014	72	30.9	31.9	0.0	
	M91	015	72	36.2	≥ 36.1	-0.1	
			ILI)	29.9 27.9 31.9 36.2 32.6 30.4 31.9 32.3	31.9 36.1 31.8 29.4 30.9		
140 mg/kg	M01	011	72	32.6	31.8	-0.8	
ROUNDUP ®	M01	012	72 juli julie	ું 30.4⊘ે.	29.4	-1.0	
Males	M01	013	7.2	31.9	30.9	-1.0	
	M01	014	72	32.3	31.7	-0.6	
	M01	015	72	32.8	32.2	-0.6	
			Nog this the girs of	is Chi			
278 mg/kg	M02	011	15 7 18 72 NO NE	35.6	32.9	-2.7	
ROUNDUP ®	M02	012	10 4 1 172 0 0 0 0	35.7	33.7	-2.0	
Males	M02	013	10 10 10 10 10 10 10 10 10 10 10 10 10 1	32.2	31.0	-1.2	
	M02	014	SUL 15 10172 1018	30.1	29.4	-0.7	
	M02	015	72	34.1	32.5	-1.6	
	lbs.	237	olo di con luo,				
555 mg/kg	M03	003	72	31.4	30.3	-1.1	
ROUNDUP ®	M03	009	30° 41113 11112 72	33.2	31.7	<i>-</i> 1.5	
Males	M03 M03 M03	010	72 72 72 72 72 72 72 72 72 72 72 72 72 7	33.4	30.1	-3.3	
	M03	011	72	32.9	33.2	0.3	
	M03 M03 M03	014	72	31.3	30.7	-0.6	

Hours after treatment.

APPENDIX II - TABLE 1 (continued) BODY WEIGHT TABLE FOR THE MICRONUCLEUS EXPERIMENT WITH ROUNDUP® HERBICIDE FORMULATION 24 HOUR FEMALES

Group	Animal Number	Time of		Body Weight (g)	Salar Salar
	Matura	Sacrifice * (hr)	Pretest	Elnal	Difference
10 ml/kg	F91 001	24	25.5	24.6	-0.9
Sterile Saline	F91 002	24	27.4	26.0	-1.4
Females	F91 003	24	27.9	26.5	-1.4
	F91 004	24	30.10	28.6	-1.5
	F91 005	24	27.4 27.9 30.1 28.8	26.0 26.5 28.6 27.9	-0.9
			10 001,90r	9,01,45	
140 mg/kg	F01 001	24	32.3	29.4	-2.9
ROUNDUP ®	F01 002	24	28.8	27.3	-1.5
Females	F01 003	24	28.25	27.4	-0.8
	F01 004	24	29.1	27.6	-1.5
	F01 005	24	26.90	25.9	-1.0
> * **	E00 004	10/10/1931	The succession of successions	04.7	4.0
278 mg/kg	F02 001	168 4 10, Kall	0 11126.5	24.7	-1.8
ROUNDUP ®	F02 002	JIV 25 031 10	27.3	26.9	-0.4
emales	F02 003	00 10 24 11 000	(C) (C) 27.1	26.1	-1.0
	F02 004	10, 10, 10, 10, 10,	27.5	26.8	-0.7
	F02 005	24 24 24 24 24 24 24 24 24 24 24 24 24 2	29.0	28.6	-0.4
55 mg/kg	F03 010	10, 00, 115 VOLES	25.1	24.1	-1.0
	F03 012	24	31.3	31.2	-0.1
emales	F03 013	0) 0) 240	29.2	28.5	-0.7
	F03 015	0 24	25.3	24.7	-0.6
0 mg/kg Cyclophosphamide Females	F03 012 F03 013 F03 015 F03 018 F04 001 F04 002 F04 003	24 24 24 24 24 24 24 24 24 24 24 24 24 2	27.4	25.2	-2.2
0 mg/kg	F04 001	.5 24	28.7	28.5	-0.2
Cyclophosphamide	F04 002	24	29.0	28.7	-0.3
emales	F04 003	24	28.4	27.5	-0.9
We,	F04 004	24	29.0	28.4	-0.6
Schi Schi	F04 005	24	27.6	26.5	-1.1

⁴ Hours after treatment.

APPENDIX II - TABLE 1 (continued) BODY WEIGHT TABLE FOR THE MICRONUCLEUS EXPERIMENT WITH ROUNDUP® HERBICIDE FORMULATION 48 HOUR FEMALES

Group	Animai	Time		Body Weight (g)	iligia and a second
	Number	of Sacrifice * (hr)	Pretest	ion Final Control of C	Difference
10 ml/kg	F91 006	48	27.4	26.5 cl w	-0.9
Sterile Saline	F91 007	48	26.5	(26.0)	-0.5
Females	F91 008	48	32.6	31.9	-0.7
	F91 009	48	24.7	23.5	-1.2
	F91 010	48	24.2	· · · · · · · · · · · · · · · · · · ·	-0.6
140 mg/kg	F01 006	48	24.2 24.0 28.8 28.6 26.6	23.6 23.4 27.8 28.4 28.1	-0.6
ROUNDUP ®	F01 007	48 (19)	28.8	27.8	-1.0
Females	F01 008	48 617 10	- A A . B	28.4	-0.2
	F01 009	4.8	26.6	28.1	1.5
	·F01 010	48 48 48 48 48 48 48 48	28.8 28.6 26.6 29.5	28.4	-1.1
278 mg/kg	F02 006	010 014 8 11 0 du	eri 30.6	30.5	-0.1
ROUNDUP ®	F02 007	(5 ,0) (4.8 ,0 °C)	26.0	25.7	-0.3
Females	F02 008	C' 3148	24.7	24.6	-0.1
	F02 009	N 60 K48 K 1 60	27.2	26.3	-0.9
	F02_010	inis Hill 48° The	29.3	28.8	-0.5
555 mg/kg	F03 001	4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8	25.8	25.2	-0.6
ROUNDUP ®	F03 002		28.7	29.4	0.7
Females	F03 003	48 48 48	30.4	27.9	-2.5
× ×	F03 005	48	29.3	28.9	-0.4
a not	F03\006	48	30.0	28.8	-1.2

A Hours after treatment.

APPENDIX II - TABLE 1 (continued)

BODY WEIGHT TABLE FOR THE MICRONUCLEUS EXPERIMENT WITH ROUNDUP® HERBICIDE FORMULATION

72 HOUR FEMALES

Group	Animal	Time of		Body Weight (g)	:070:
	Number	Sacrifice (hr)	Pretest	Final	Difference
10 ml/kg	F91 011	72	27.0	27.0	0.0
Sterile Saline	F91 012	72	27.0 30.4 31.8	26.6	-0.4
Females	F91 013	72	30.4	29.50	-0.9
	F91 014	72	31.8	3104 15	-0.4
	F91 015	72	30.4 31.8 25.6 26.1 27.6 25.9 30.9 23.9	25,5	-0.1
140 mg/kg	F01 011	72		26.1	0.0
ROUNDUP ®	F01 012	72	23.6	26.8	-0.8
Females	F01 013	72	(6° (25,9° 6°)	26.1	0.2
	F01 014	72 1119	30.9	30.7	-0.2
	F01 011 F01 012 F01 013 F01 014 F01 015 F02 011 F02 012 F02 013 F02 014 F02 015 F03 007 F03 008 F03 009 F03 011 F03 014	72 0 6	10 1 23.9 10 T	22.9	-1.0
278 mg/kg	F02 011	1672 JC (18)	29.2	28.9	-0.3
ROUNDUP®	F02 012	72 37 6	28.8	28.8	0.0
Females	F02 013	(12 00 ×	26.2	26.5	0.3
	F02 014	72 0	27.4	28.2	0.8
	F02 015	C CU172 15	30.4	29.3	-1.1
555 mg/kg	F03 007	15 110 11 72 110 10 10 10 10 10 10 10 10 10 10 10 10	23.3	23.3	0.0
ROUNDUP ®	F03 008	912 117 597	24.4	25.0	0.6
Females	F03 009	72	25.4	26.1	0.7
	F03 011	5 672	31.9	28.3	-3.6
	ECHERINA OLA SERVICE	72	28.1	29.4	1.3

Slide Scoring Data for the Micronucleus Experiment with ROUNDUP® Herbicide Formulation (PCE/Erythrocyte Ratio and Micronucleated PCE's)

24 Hour Males

APPENDIX II - TABLE 2

			(= , ,	24 Hour Male	95	ner	100	S
Group	Animal Number	Time Hrs.	PCE/Ery	inrocyte Ratio a	• • • • • • • • • • • • • • • • • • • •	Ero Postin	Micronucleated	PCE b
			Sld. 1	SId. 2	Mean 🥳	Sld. 1	Sid. 2	Combined
10 ml/kg	M 038	24	0.456	0.510	0.483	3. Ollo et	2	2
Sterile Saline	M 177	24	0.352	0.396	0.374		. 0	1
Males	M 202	24	0.464	0.372	0.418	Children Control	0	1
	M 209	24	0.476	0.432	0.454	MI MO ON	1	1
	M 232	24	0.442	0.370	0.406	Chie o	1	2
140 mg/kg	M 140	24	0.516	0.522	0.519	drits o	0	0
ROUNDUP®	M 187	24	0.454	0.508	0.481 6	0	0	0
Males	M 234	24	0.488	0.560	0.524	1	0	1
	M 255	24	0.438	0.538	0.488	1	0	1 c
	M 304	24	0.442	0.452	0.447	2	0	2
278 mg/kg	M 135	24	0.488	0.596	0.542	2	1	3
ROUNDUP®	M 227	2 4	0.464	0.474	0.469	3	0	3
Males	M 245	24	0.482	0.434	0.458	1	1	2
	M 261	24 .	0.496	0.582	0.539	0	1	1
	M 290	24	0.488	0.472	0.480	0	2	2
555 mg/kg	M 189	25/24101K	0.414	0.458	0.436	0	0	0
ROUNDUP®	M 205	. C 24 %	0.340	0.336	0.338	0	0	0
Males	M 217	24	0.380	0.344	0.362	1	1	2
	M 268	(1) (24)	0.384	0.442	0.413	3	4	7 с
	M 287	111° 24 11	0.442	0.444	0.443	0	0	0
40 mg/kg	M 112	24	0.400	0.434	0.417	7	9	16
Cyclophosphamide	M 179	24	0.544	0.602	0.573	13	18	3 1
Males	M 194	24	0.434	0.452	0.443	21	18	39
vel.	M 233	24	0.510	0.560	0.535	12	20	32 c
*OCALL	M 240	24	0.472	0.474	0.473	18	10	28

APPENDIX II - TABLE 2 (continued)

Slide Scoring Data for the Micronucleus Experiment with ROUNDUP® Herbicide Formulation (PCE/Erythrocyte Ratio and Micronucleated PCE's) 48 Hour Males

Group		imal mber	Time Hrs.	PCE/Eryt	hrocyte Ratio a		olius exp	Micronucleated	PCE b
*****				Sld. 1	Sld. 2	Mean	Sid.1	Sld, 2	Combined
10 ml/kg	М	066	48	0.436	0.404	0.420		0	0
Sterile Saline	М	117	48	0.484	0.462	0.473	0000	0	0
Males	М	161	48	0.510	0.508	0.509		0	0
	М	257	48	0.558	0.500	0.529	d 2	3	5
	М	294	48	0.542	0.502	0.522	0	1	1
140 mg/kg	М	171	48	0.476	0.496	0.486	0	1	1
ROUNDUP®	M	198	48	0.552	0.500	0.526	0	0	0
Males	M	223	48	0.432	0.404	0.418	0	0	0
	М	242	48	0.560	0.530	0.545	3	3	6
	М	249	48	0.594	0.496	0.545	0	1	1 c
278 mg/kg	М	147	48 5	0,572	0,512	0.542	0	0	0
ROUNDUP®	M	247	4.8	0.482	0.426	0.454	1	2	3
Males	M	251	48	0.544	0.412	0.478	0	0	0
	M	260	548V	0.360	0.430	0.395	1	0	1
	М	298	(48 K)	0.510	0.516	0.513	1	0	1
555 mg/kg	М	047	(148)	0.360	0.436	0.398	0	0	0
ROUNDUP®	M.	219	10° 48 10°	0.374	0.326	0.350	0	1	1
Males	M	222	48	0.366	0.338	0.352	2	2	4
		282	48	0.298	0.446	0.372	1	1	2
	SUCHEM		4.8	0.410	0.378	0.394	1	0	1

APPENDIX II - TABLE 2 (continued)

Slide Scoring Data for the Micronucleus Experiment with ROUNDUP® Herbicide Formulation (PCE/Erythrocyte Ratio and Micronucleated PCE's) 72 Hour Males

Group	Animal Number	Time Hrs.	PCE/Eryt	hrocyte Ratio *	inic act	3 cillus et	Micronucleated	PCE b
			Sid. 1	Sld. 2	Mean	\$ld.1	Sld. 2	Combined
10 ml/kg	M 125	72	0.616	0.598	0.607	M 3 50	1	4
Sterile Saline	M 203	72	0.514	0.436	0.475	ie of the	1	2
Males	M 225	72	0.674	0.534	0.604	S 3	0	3
	M 266	72	0.440	0.420	0.430	Ø 0	1	1
	M 306	72	0.612	0.596	0.604	1	1	2
140 mg/kg	M 087	72	0.444	0.618	0.531	1	0	4
ROUNDUP®	M 151	72	0.580	0.856	0.718	,	0	'n
Males	M 206	72	0.376	0.470	0.473	1	0	1
Maies	M 241	7 2 7 2	0.576	0.654	0.615	1	0	1
	M 258	7 2 7 2	0.686	0 01 111 110	0.705	1	0	1
	W 256	12	10 1/15 (19)	0.724	0.703	•	U	'
278 mg/kg	M 100	72 9	0.672	0.810	0.741	2	0	2
ROUNDUP®	M 173	72	0.594	0.626	0.610	0	1	1
Males	M 182	72	0.524	0.572	0.548	1	3	4
	M 208	72	0.500	0.400	0.450	0	0	O
	M 281	72	0.596	0.642	0.619	0	0	0
555 mg/kg	M 012	720	0.646	0.642	0.644	2	1	3
ROUNDUP®	M 168	10 70 m	0.512	0.648	0.580	2	Ó	2
Males	M 180	1072	0.492	0.418	0.455	1	0	1
MICIES	M 191	72.5	0.554	0.536	0.545	2	0	2
.6	M 277	72	0.570	0.568	0.569	2	0	2
		<u></u>						

APPENDIX II - TABLE 2 (continued)

Slide Scoring Data for the Micronucleus Experiment with ROUNDUP® Herbicide Formulation (PCE/Erythrocyte Ratio and Micronucleated PCE's) 24 Hour Females

Group	Animal Number	Time Hrs.	PCE/	Erythrocyte Ratio	•	E 10 40 00 1	Micronucleat	ed PCE b
•••••••••			Sid. 1	Sld. 2	Mean	Sid. 1	Sld. 2	Combined
10 ml/kg	F 195	24	0.536	0.482	0.509	Nie COO NO	0	0
Sterile Saline	F 213	24	0.543 d	0.408	0.476	~ \ , , , , , , \ .	<u></u> 0	2
Females	F 217	24	0.602	0.508	0.555	ill all or	TUE 0	0
	F 234	24	0.436	0.468	0.452	COLLING	0	0
	F 303	24	0.406	0.446	0.426	1 0 0	2	2
140 mg/kg	F 154	24	0.475 d	0.460	0.467	01,01013	2	3
ROUNDUP®	F 162	24	0.430	0.462	0.446	0	2	2
Females	F 170	24	0.558	0.466	0.512	0	0	0
	F 216	24	0.710	0.582	0.646	0	0	0
	F 230	24	0.498	0.544	0.521	0	0	0
278 mg/kg	F 209	24	0.548	0.498	0.523	0	0	0
ROUNDUP®	F 219	24	0.566	0.526	0.546	0	0	0
Females	F 229	24	0.426	0,526 0,502	0.464	1	0	1
	F 287	24	0.618	0.612	0.615	0	0	0
	F 305	240	0.496	0.456	0.476	0	0	0
555 mg/kg	F 168	(S24)0	0.396	0.472	0.434	2	0	2
ROUNDUP®	F 243	24	0.534	0.536	0.535	0	0	0
Females	F 260	24	0.584	0.526	0.555	0	2	2
	F 296	(240)	0.468	0.538	0.503	0	1	1 c
	F 297	1110 24	0.540	0.542	0.541	2	0	2
40 mg/kg	F 220	24.5	0.598	0.490	0.544	18	16	3 4
Cyclophosphamide	F 245	24	0.478	0.482	0.480	5	10	15 c
Females	F 256	24	0.572	0.498	0.535	19	13	32 c
ule,	F 264	24	0.418	0.474	0.446	10	11	21 c
COL	F 269	24	0.536	0.534	0.535	15	11	26 c

APPENDIX II - TABLE 2 (continued)

Slide Scoring Data for the Micronucleus Experiment with ROUNDUP® Herbicide Formulation (PCE/Erythrocyte Ratio and Micronucleated PCE's) 48 Hour Females

Group	Animal Number	Time Hrs.	PCE/	Erythrocyte Ratio	olic o	te cille et	Micronucleate	ed PCE b
			Sld. 1	Sid. 2	Mean	Sld. 1	Sld. 2	Combined
10 ml/kg	F 167	48	0.552	0.534	0,543	COLL TOPE OF	1	1
Sterile Saline	F 187	48	0.612	0.564	0.588		0	0
Females	F 200	48	0.428	0.434	0.431	18 1	1	2
	F 248	48	0.500	0.524	0.512	0	0	0
	F 255	48	0.614	0.574	0.594	1	0	1
140 mg/kg	F 164	48	0.498	0.544	0.521	0	. 0	0
ROUNDUP®	F 191	48	0.444	0.450	0.447	1	0	1
Females	F 196	48	0.502	© 0.476	0.489	1	0	1
	F 204	48	0.534	0.526	0.530	3	0	3
	F 231	48	0.470	0.474	0.472	0	0	0
278 mg/kg	F 173	48	0.526	0.538	0.532	0	0	0
ROUNDUP®	F 178	48	0.560	0,634	0.597	0	1	1
Females	F 266	48	0.540	0.636	0.588	0	0	0
	F 283	/< ² '48'	90.512	0.550	0.531	Ô	0	0
	F 295	V 48 %	0.548	0.556	0.552	0	2	2
555 mg/kg	F 165	(10,1480)	0.446	0.444	0.445	1	2	3
ROUNDUP®	F 166	48	0.570	0.444	0.507	0	0	0
Females	⊘F_176	1048	0.410	0.450	0.430	0	0	0
Č	E 271	48.5	0.588	0.642	0.615	0	1	1
, '5 12	F 293	4.8	0.430	0.426	0.428	0	0	0

							*Sunder El	104.
			ADE	PENDIX II - TABLE	= 2 (continued)		"S TWO	
							eur	Se
	Slide Sc	oring Data f		eus Experiment wi ocyte Ratio and I 72 Hour Fen	Micronucleated PC		DRMULATION	
Group	Animal Number	Time Hrs.	PCE/E	Erythrocyte Ratio	* (C)	ie ille	Micronucleat	ed PCE b
			Sld. 1	Sld. 2	Mean	Sld,1	Sld. 2	Combined
10 ml/kg	F 235	72	0.396	0.384	0.390	in West	1	2
Sterile Saline	F 240	72	0.544	0.542	0.543	COTON TES	0	1
- emales	F 241	72	0.564	0.478	0.521	J. M. By	0	1
	F 281	72	0.614	0.720	0.667	0 ////	1	1
	F 290	72	0.500	0.450	0.475	2 1	3	4
140 mg/kg	F 160	72	0.610	0.580	0.595	1	1	2
ROUNDUP®	F 253	72	0.476	0.512	0.494	2	0	2
emales	F 286	72	0.632	0.682	0.657	0	2	2
	F 300	72	0.674	0.666	0.670 0.550	1	0	1
	F 309	72	0.570	0.530	0.550	0	1	1 c
278 mg/kg	F 156	72	0.636	0.678	0.657	1	1	2
ROUNDUP®	F 163	720	0.654 [©] Ø	0.720	0.687	0	0	0
-emales	F 169	72	0.604	₹ .0.596	0.600	0	1	1
	F 233	5725	0.406	0.474	0.440	0	0	0
	F 299	⟨\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.622	0.670	0.646	0	2	2
555 mg/kg	F 157	72	0.688	0.700	0.694	0	1	1
ROUNDUP®	F 74	. (S) 7.2	0.598	0.540	0.569	0	0	Ó
Females	F 172	72	0.332	0.342	0.337	0	0	0
	F 189	72	0.450	0.404	0.427	Ō	0	0
	~ U		0.734	0.770				

APPENDIX II - Table 2 (Footnotes)

- A factor of policy used in a the actual number of Policy and in the actual number of Policy and Indiana. The actual number of Policy and Indiana numb Ratio scored per 500 erythrocytes (PCEs and NCEs) for each slide except as noted in (d) and mean ratio of both slides (equivalent to ratio for 1000 erythrocytes).

 - Significantly discordant scoring results observed in initial scoring, slides were re-scored and rescored value used in analysis.
 - Total PCE/NCE not equal to 500, but between 490 and 510. Ratio was calculated to reflect the actual number of PCE/NCE counted.

APPENDIX II - TABLE 3 ANIMAL NUMBER ASSIGNMENTS FOR THE MICRONUCLEUS EXPERIMENT WITH ROUNDUP® HERBICIDE FORMULATION

		E 234 F 217 F 213 F 303 F 195 F 255 F 167 F 200 F 248 F 187 F 241 F 240 F 235 F 290 F 281
Group	Study Number	Lot Number
40 ml/lem	E01 001	F 234 F 217 F 213 F 303 F 195 F 255 F 167 F 200 F 248 F 187 F 241 F 240 F 235 F 290 F 281 F 162 F 170 F 216 F 230 F 204 F 231 F 164 F 196 F 191 F 300 F 160 F 286 F 309 F 253 F 209 F 287 F 219 F 173
10 ml/kg Storilo Salino	F91 001	F 217
Sterile Sainte	F01 002	F 217
i emales	F91 003	E 303
	F91 004	F 105
	F91 005	F 255
	F91 007	F 167
	F91 008	F 200 110 115 1111 04
	F91 009	F 248
	F91 010	F 187
	F91 011	F 241 : dr. d 200 chi une out
	F91 012	F 240
	F91 013	F 235 617 617 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	F91 014	F 290
	F91 015	F 281
		till chile di light this to
140 mg/kg	F01 001	F 154
ROUNDUP®	F01 002	11 62 11 62 11 6 1 1 1 1 1 1 1 1 1 1 1 1
Females	F01 003	(170 A)
	F01 004	F 216
	F01 005	√° ×F 230
•.0	F01 006	F 204
lbn.	F01 007	F 231
La si	F01 008	KO F 164
KS, eng	F01 009	F 196
2, 10° 87	F01 010	F 191
along this	F01 041	F 300
Object Fell Hill	F01 012	F 160
Sold the right dice in	F01 013	F 286
"The Joseph Pills O.	F01 014	F 309
house and this	F01 015	F 253
27	E00.004	F 000
2/8 mg/kg	F02 001	F 209
HOUNDUP®	F02 002	F 305
remales	F02 003	r 229
O ²	F02 004	Γ 28/ Ε 210
	F02 005 F02 006	F 219
	F02 006	F 173
		F 283
	F02 008 F02 009	F 178
	F02 009 F02 010	F 266
	702 U10	F 295

APPENDIX II - TABLE 3 (Continued) ANIMAL NUMBER ASSIGNMENTS FOR THE MICRONUCLEUS EXPERIMENT WITH ROUNDUP® HERBICIDE FORMULATION

Group	Study Number	Lot Number F 233 F 156 F 299 F 163 F 169 F 271 F 155 F 166 F 293 F 176 F 172 F 189 F 157
	F02 011	F 233 F 156 F 299 F 163 F 169 F 271 F 155 F 166 F 293 F 176 F 172 F 189 F 157 F 297 F 171 F 168 F 260 F 251 F 296 F 243 F 264 F 269 F 220
	F02 012	F 156
	F02 013	F 299
	F02 014	F 163
	FU2 015	F 169
555 mg/kg	F03 001	F 271 (10 10 10 10 10 10 10 10 10 10 10 10 10 1
ROUNDUP®	F03 002	F 155 110 014
Females	F03 003	F 166
	F03 005	F 293 (1) (1) (1) (1) (1)
	F03 006	F 176 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	F03 007	F 172
	F03 008	F 189 00 00 00 00 00 00 00 00 00 00 00 00 00
	F03 009	FS157
	F03 010	87 29 7 11 11 12 12 11 11 12 12 11 11 12 12 11 11
	F03 011	
	F03 012	F 108
	F03 013	F 250
	F03 014	F 296 %
	F03 048	F 243
	Projection of the color	F 155 F 166 F 293 F 176 F 172 F 189 F 157 F 297 F 171 F 168 F 260 F 251 F 296 F 243 F 264 F 269 F 220 F 256
40 mg/kg	F04 001	F 264
Cyclophosphamide	7 F04 002	[∞] F 269
Females	F04,003	F 220
	F04 004	F 256
40 mg/kg Cyclophosphamide Females 10 ml/kg Sterile Saline Males	F04005	F 245
10 ml/kg	M91 001	M 232
Sterile Saline	M91 002	M 202
Sterile Saline Males Males	M91 003	M 038
18/1/18	M91 004	M 177
ent sittly	M91 005	M 209
illy	M91 006	M 117
	M91 007	M 066
C _O .	M91 008	M 257
	M91 009	M 294
	M91 010 M91 011	101
	M91 011 M91 012	M 225 M 306
	M91 012 M91 013	M 203
	M91 013	M 125
	M91 014 M91 015	M 266
		171 mJV

APPENDIX II - TABLE 3 (Continued) ANIMAL NUMBER ASSIGNMENTS FOR THE MICRONUCLEUS EXPERIMENT WITH ROUNDUP® HERBICIDE FORMULATION

Group	Study Number	Lot Number M 234 M 140 M 304 M 187 M 255 M 249 M 198 M 242 M 171 M 223 M 206 M 151 M 087 M 258	
140 mg/kg	M01 001	M 234 M 140 M 304 M 187 M 255 M 249 M 198 M 242 M 171 M 223 M 206 M 151 M 087 M 258 M 241 M 135 M 245 M 245 M 261	Sunde
ROUNDUP®	M01 002	M 140	ent's
Males	M01 003	M 304	THUE . THE
	M01 004	M 187	tocklies allo
	M01 005	M 255	769, 101,
	M01 006	M 249	ilo iligili
	M01 007	M 198	e. 10101°
	M01 008	M 242	ot ot
	M01 009	M 171	cia.
	M01 010	M 223	of life!
	M01 011	M 206 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	16 0h
	M01 012	M 15t	ilis .
	M01 013	M. 087),
	M01 014	M 258	
	M01 015	M 241	
	(6)	Stried High Hull to I	
278 mg/kg	M02 001	M 135	
ROUNDUP®	M02 002	M 227	
Males	M02 003	M 245	
	M02004	M 261	
	M02 005	M 290	
	M02 006	M 251	
	M02 007	M 298	
	M02 008	M 147	
	M02 009	M 260	
	M02 010	M 247	
to the	M02 011	M 182	
OS ALL	M02 012	M 173	
olo, us, iting	M02 013	M 100	
"He , Ch, Ko 17	M02 014	M 208	
inothe god sully	M02 003 M02 004 M02 005 M02 006 M02 007 M02 008 M02 009 M02 010 M02 011 M02 012 M02 013 M02 014 M02 015 M03 001 M03 002 M03 003 M03 004 M03 005	M 249 M 198 M 242 M 171 M 223 M 206 M 151 M 087 M 258 M 241 M 135 M 227 M 245 M 261 M 290 M 251 M 298 M 147 M 260 M 247 M 182 M 173 M 100 M 247 M 182 M 173 M 100 M 208 M 281 M 217 M 287 M 012 M 205 M 268	
555 mg/kg	○ M03 001	M 217	
BOLINDUP®	M03 002	M 287	
Males	M03 003	M 012	
THATOO CONS	M03 004	M 205	
O	M03 005	M 268	
	M03 006	M 189	
	M03 007	M 219	
	M03 007	M 222	
	M03 009	M 168	
	14100 003	141 100	

APPENDIX II - TABLE 3 (Continued) ANIMAL NUMBER ASSIGNMENTS FOR THE MICRONUCLEUS EXPERIMENT WITH ROUNDUP® HERBICIDE FORMULATION

M03 010 M03 011 M03 012 M03 014 M03 015 M03 017 M04 001 M04 002 M04 003 M04 004 M04 005	er Lo M M M M M M M M M M M M M M M M M M M	of Number 277 180 282 191 047 293 233 112 194 240 179
M03 010 M03 011 M03 012 M03 014 M03 015 M03 017 M04 001 M04 002 M04 003 M04 004 M04 005	M M M M M M M M M M	277 180 282 191 047 293 233 112 194 240 179
M03 017 M04 001 M04 002 M04 003 M04 004 M04 005	M M M M M M	233 112 194 240 179 240 179 240 179 240 179 240 240 240 240 240 240 240 240 240 240
oided for divi	rolling to and selling to a sel	The of the period and to the identity of the i
wideo suci	is Join by	XX
GOTHOL OLI	is course of	Oribite
Schlock hay h	Ø`	
	Still tion of Still the still	document may the feor