CONFIDENTIAL

TECHNICAL GLYPHOSATE:

REVERSE MUTATION ASSAY "AMES TEST"

USING SALMONELLA TYPHIMURIUM

AND ESCHERICHIA COLI

SPL PROJECT NUMBER: 434/014

SafePharm Laboratories

DERBY U.K.

QUALITY ASSURANCE REPORT

The routine inspection of short term studies at Safepharm Laboratories is carried out as a continuous process designed to encompass all major phases of each study type once per month. Dates of relevant monthly inspections are given below.

Date(s) of Inspection and Reporting:

07, 20, 28 November 1995

: 15

This report has been audited by Safepharm Laboratories Quality Assurance Unit. It is considered to be an accurate account of the data generated and of the procedures followed.

Date of Report Audit:

02 January 1996

...... DATE:

C.Biol., M.I. Biol.

For Safepharm Quality Assurance Unit

GLP COMPLIANCE STATEMENT

I, the undersigned, hereby declare that the objectives laid down in the protocol were achieved and as nothing occurred to adversely affect the quality or integrity of the study, I consider the data generated to be valid. This report fully and accurately reflects the procedures used and data generated.

The work described was performed in compliance with the UK Principles of Good Laboratory Practice (The United Kingdom Compliance Programme, Department of Health 1989). These Principles are in accordance with GLP standards published as OECD Environment Monograph No. 45 (OCDE/GD(92)32); and are in conformity with, and implement, the requirements of Directives 87/18/EEC and 88/320/EEC.

These international standards are acceptable to the United States Environmental Protection Agency and Food and Drug Administration, and fulfil the requirements of 40 CFR Part 160, 40 CFR Part 792 and 21 CFR Part 58 (as amended); and to the Japanese Ministry of Agriculture, Forestry and Fisheries (59 NohSan, Notification No. 3850, Agricultural Production Bureau) Confirmed by an Arrangement between the Ministry and UK Department vveitare (Notification No. 31.

vveitare (Notification No. 31.

and the Japanese Ministry of International Trade and Industry (Cheronal Law, Kanpogyo No. 39 Environmental Agency, Kikyoku No. 85). of Health; the Japanese Ministry of Health and Welfare (Notification No. 313, Pharmaceutical Affairs Bureau - as amended, and Kanpogyo No. 39 Environmental Agency, Yakuhatsu No. 229); and the Japanese Ministry of International Trade and Industry (Chemical Substances

DATE: _____2 0 FEB 1996

Study Director for Safepharm Laboratories

CONTENTS

		DDUCTION MATERIAL ODS Tester Strains Preparation of Test and Control Materials Microsomal Enzyme Fraction S9-Mix and Agar Test Procedure Interpretation of Results IVES TS Preliminary Toxicity Study Mutation Study EUSION ENCES Key to Tables of Test Results TABLE 1 Spontaneous Mutation Rates	PAG
C1 13 41	4 4 D3/	documes. and use	5
	MARY	DUCTION SOLD TO THE SOLD THE S	<i>7</i>
1.	Trer	DDUCTION	, α
2.	METH	MATERIAL	ρ
3.	MEIN	Total Chains	ρ
	3.1	Personal and Control Materials	ο ο
	3.2	Preparation of Test and Control Materials	9
	3.3	Microsomai Enzyme Fraction	10
	3.4	59-Mix and Agar	10
	3.5	Test Procedure	10
	3.6	Interpretation of Results	12
4.	ARCH	IVES OF THE PROPERTY OF THE PR	12
5.	RESUL	TS Republic Control of the Control o	13
	5.1	Preliminary Toxicity Study Mutation Study LUSION ENCES Key to Tables of Test Results TABLE 1 Spontaneous Mutation Rates TABLE 2 Experiment 1 - Without Metabolic Activation TABLE 3 Experiment 1 - With Metabolic Activation TABLE 4 Experiment 2 - Without Metabolic Activation TABLE 5 Experiment 2 - With Metabolic Activation	13
	5.2	Mutation Study	13
6.	CONC	TUSION	14
7.	REFER	ENCES	14
APPE	NDICES	s. Histi The and	15
APPE	NDIXT	Key to Tables of Test Results	16
Sic, luci	THINGICS	TABLE 1 Spontaneous Mutation Rates TABLE 2 Experiment 1 - Without Metabolic Activation TABLE 3 Experiment 1 - With Metabolic Activation	17
30CC X	J PUL	TABLE 2 Experiment 1 - Without Metabolic Activation	18
0	(L)	TABLE 3 Experiment 1 - With Metabolic Activation	19
CUITS		TABLE 4 Experiment 2 - Without Metabolic Activation	20
χ,		TABLE 5 Experiment 2 - With Metabolic Activation	21
APPE	NDIX II	Report of Results in Mutagenicity Test using	22
		Micro-organisms (Industrial Safety and Health Law)	
APPE	NDIX II	I Dose Response Curve	34
APPE	NDIX IV	/ Statement of GLP Compliance in Accordance with Directive	38
		88/320/EEC	

SUMMARY

STUDY SPONSOR : MASTRA INDUSTRIES SDN. BHD.

CO-SPONSOR : MARUZEN KAKO CO., LTD.

STUDY TYPE : REVERSE MUTATION ASSAY "AMES

TEST" USING SALMONELLA

TYPHIMURIUM AND ESCHERICHIA

COL

TEST MATERIAL : TECHNICAL GLYPHOSATE

- 1. Salmonella typhimurium strains TA1535, TA1537, TA98 and TA100 and Escherichia coli strain WP2uvrA were treated with suspensions of the test material using the Ames plate incorporation method at five dose levels, in triplicate, both with and without the addition of a rat liver homogenate metabolising system (10% liver S9 in standard cofactors). This method conforms to the guidelines for bacterial mutagenicity testing published by the major Japanese Regulatory Authorities including MITI, MHW, MOL and MAFF. It also meets the requirements of the OECD, EC and USA, EPA (TSCA) guidelines. The dose range was determined in a preliminary toxicity assay and was 50 to 5000 µg/plate in the first experiment. The experiment was repeated on a separate day using the same dose range as experiment 1, fresh cultures of the bacterial strains and fresh test material formulations.
- 2. The vehicle (sterile distilled water) control plates produced counts of revertant colonies within the normal range.
- 3. All of the positive control chemicals used in the test produced marked increases in the frequency of revertant colonies, both with and without the metabolising system.
- 4. The test material caused no visible reduction in the growth of the bacterial lawn at any dose level either with or without metabolic activation, however a decrease in the frequency of revertant colonies was observed with some bacterial strains. The test material was tested up to the maximum recommended dose level of 5000 µg/plate.

5. No significant increase in the frequency of revertant colonies was recorded for any of the bacterial strains with any dose of the test material, either with or without metabolic activation. The test material was found to be non-mutagenic under the

al, eith

.o be non-m

.o be no Age of the declination of the de

TECHNICAL GLYPHOSATE: REVERSE MUTATION ASSAY "AMES TEST" USING SALMONELLA TYPHIMURIUM AND ESCHERICHIA COLI

1. INTRODUCTION

+ 11

This study was conducted according to Safepharm Standard Method Number JMOL 01 and was designed to assess the mutagenic potential of the test material using a bacterial/microsome test system. The study was based on the *in vitro* technique described by Ames and his co-workers (1, 2, 3) and Garner et al (4) in which mutagenic activity is assessed by exposing histidine auxotrophs of *SalmoneJla typhimurium* to various concentrations of the test material. This method conforms to the guidelines for bacterial mutagenicity testing published by the major Japanese Regulatory Authorities including MITI, MHW, MOL and MAFF. This method also conforms with the OECD Guidelines for the Testing of Chemicals, Protocol No. 471, Method B14 in EC Commission Directive 92/69/EEC and the USA, EPA (TSCA) guidelines. A copy of the Certificate of Compliance with GLP, issued by the UK Department of Health, is included as Appendix IV.

These mutant strains of Salmonella are incapable of synthesising histidine and are, therefore, dependent for growth on an external source of this particular amino acid. When exposed to a mutagenic agent these bacteria may undergo a reverse mutation to histidine independent forms which are detected by their ability to grow on a histidine deficient medium. Using various strains of this organism, revertants produced after exposure to a chemical mutagen may arise as a result of base-pair substitution in the genetic material (miscoding) or frame-shift mutation in which genetic material is either added or deleted. In order to make the bacteria more sensitive to mutation by chemical and physical agents, several additional traits have been introduced. These include a deletion through the excision repair gene (uvrB) which renders the organism incapable of DNA excision repair and deep rough mutation (rfa) which increases the permeability of the cell wall. In addition, a mutant strain of Escherichia coli (WP2uvrA), which requires tryptophan and which can be reverse mutated by base substitution to tryptophan independence, was used to complement the Salmonella strains. Since many compounds do not exert a mutagenic effect until they have been metabolised by enzyme systems not available

in the bacterial cell, the test material and the bacteria are also incubated in the presence of a liver microsomal fraction (S9) prepared from rats pre-treated with a compound known to induce an elevated level of these enzymes.

The study was performed between 19 August 1995 and 13 November 1995.

2. TEST MATERIAL

Sponsor's identification : TECHNICAL GLYPHOSATE

Chemical name : N-(phosphonomethyl)glycine

Lot number : H95D 161 A

Purity : 95.3% w/w

Date received : 4 August 1995

Description : white powder

Sponsor's description white to off-white crystals

Storage conditions : room temperature

Data relating to the identity, purity and stability of the test material are the responsibility of the sponsor.

3. METHODS

3.1 Tester Strains

Salmonella typhimurium TA1535, TA1537, TA98 and TA100
Escherichia coli WP2uvrA

The Salmonella typhimurium strains were obtained from the University of California at Berkeley on culture discs on 4 August 1995 whilst the Escherichia coli strain WP2uvrA was obtained from the British Industrial Biological Research Association on 14 August 1987. All of the strains were stored at -196°C in a Statebourne liquid nitrogen freezer, model SXR 34. Prior to the master strains being used, characterisation checks were carried out to determine the amino-acid requirement, presence of rfa, R factors, uvrB mutation and the spontaneous reversion rate.

In this assay, overnight sub-cultures of the appropriate coded stock cultures were prepared in nutrient broth and incubated at 37°C for approximately 10 hours.

3.2 Preparation of Test and Control Materials

The test material was accurately weighed and approximate half-log suspensions in sterile distilled water prepared on the day of each experiment. An allowance for purity (95%) was made prior to test material formulation. Analysis for concentration, homogeneity and stability of the test material formulations is not a requirement of the test guidelines and was, therefore, not determined.

Vehicle and positive controls were used in parallel with the test material. A solvent treatment group was used as the vehicle control and the positive control materials were as follows:

N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG) 2 μ g/plate for WP2uvrA, 3 μ g/plate for TA100 and 5 μ g/plate for TA1535

9-Aminoacridine (9AA) 80 µg/plate for TA1537

4-Nitroquinoline-1-oxide (4NQO) 0.2 µg/plate for TA98

In addition, the material 2-Aminoanthracene (2AA), which is non-mutagenic in the absence of metabolising enzymes was used in the S9 series of plates at the following concentrations:

 $\mu g/plate$ for TA100

2 μg/plate for TA1535 and TA1537

10 μg/plate for WP2uvrA

 $0.5 \mu g/plate$ for TA98

3.3 Microsomal Enzyme Fraction

S9 was prepared in-house on 9 August 1995 and 11 October 1995. It was prepared from the livers of male Sprague-Dawley rats weighing ~ 200g. These had each received a single i.p. injection of Aroclor 1254 at 500 mg/kg, 5 days before S9 preparation. Prior to use, all batches of S9 were checked for suitability using a recognised mutagenic compound (2AA).

The S9 was stored at -196 °C in a Statebourne liquid nitrogen freezer, model SXR 34.

3.4 S9-Mix and Agar

:[]

The S9-mix was prepared at 4°C as follows:

59	5.0 ml
1.65 M KCl/0.4 M MgCl ₂	1.0 ml
0.1 M Glucose-6-phosphate	2.5 ml
0.1 M NADP	2.0 ml
0.2 M Sodium phosphate buffer (pH 7.4)	25.0 ml
Sterile distilled water	14.5 ml

A known aliquot (0.5 ml) of S9-mix and 2 ml of molten, trace histidine/tryptophan supplemented media were overlaid onto a sterile vogel-bonner agar plate in order to assess the sterility of the S9-mix. This procedure was repeated, in triplicate, on the day of each experiment.

Top agar was prepared using 0.6% Difco Bacto agar and 0.5% sodium chloride with 5 ml of 1.0 mM histidine/1.0 mM biotin and 1.0 mM tryptophan solution added to each 100 ml of top agar. Base agar plates were prepared using 1.2% Oxoid Agar Technical No.3 with Vogel-Bonner Medium E and 20 mg/ml D-glucose.

3.5 Test Procedure

3.5.1 Preliminary Toxicity Study

In order to select appropriate dose levels for use in the main study, a preliminary test was carried out to determine the toxicity of the test material to the tester organisms. A mixture of 0.1 ml of bacterial suspension (TA100 or WP2uvrA), 0.1 ml of test solution, 0.5 ml phosphate buffer and 2 ml of molten, trace histidine/tryptophan supplemented media was overlaid onto sterile plates of Vogel-Bonner Minimal agar (30 ml/plate). Five doses of the test material and a vehicle control (sterile distilled water) were tested in duplicate. In addition, 0.1 ml of the maximum concentration of test solution and 2 ml of molten, trace histidine/tryptophan supplemented media were overlaid onto a sterile vogel-bonner agar plate in order to

assess the sterility of the test material. After approximately 48 hours incubation at 37°C the plates were scored for revertant colonies using a colony counter and examined for a thinning of the background lawn.

3.5.2 Mutation Study - Experiment 1 (Range-finding Study)

Five concentrations of the test material were assayed in triplicate against each tester strain, using the direct plate incorporation method in accordance with the standard methods for mutagenicity tests using bacteria.

3.5.2.1 Test Material and Vehicle Controls

Known aliquots (0.1 ml) of one of the bacterial suspensions were dispensed into sets of sterile test tubes followed by 2.0 ml of molfen trace histidine/tryptophan supplemented top agar at 45°C, 0.1 ml of the appropriately diluted test material or vehicle control and either 0.5 ml of the S9 liver microsome mix or 0.5 ml of pH 7.4 buffer. The contents of each test tube were mixed and equally distributed onto the surface of Vogel-Bonner agar plates (one tube per plate). This procedure was repeated, in triplicate, for each bacterial strain and for each concentration of test material with and without S9-mix.

3.5.2.2 Positive Controls

= []

Without Activation: A known aliquot (0.1 ml) of one of the positive control solutions (ENNG, 9AA or 4NQO) was added to a test tube containing 2.0 ml of molten, trace histidine/tryptophan supplemented top agar and 0.1 ml of the appropriate bacterial suspension. Finally, 0.5 ml of pH 7.4 buffer was added to the tube, the contents mixed and poured onto an agar plate. This procedure was then repeated, in triplicate, for each tester strain.

With Activation: A known aliquot (0.1 ml) of 2AA solution was added to a test tube containing 2.0 ml of molten, trace histidine/tryptophan supplemented top agar and 0.1 ml of the appropriate bacterial suspension. Finally, 0.5 ml of S9-mix was added to the tube, the contents mixed and poured onto an agar plate. This procedure was then repeated, in triplicate, for each tester strain.

The plates were incubated at 37°C for approximately 48 hours and the number of revertant colonies counted using a colony counter.

3.5.3 Mutation Study - Experiment 2 (Main Study)

The second experiment was performed using methodology as described for experiment 1, using fresh bacterial cultures, test material and control solutions in triplicate.

3.6 Interpretation of Results

For a substance to be considered positive in this test system, it should have induced a dose-related and statistically(5) significant increase in mutation rate (of at least twice the spontaneous reversion rate) in one or more strains of bacteria in the presence and/or absence of the S9 microsomal enzymes in both experiments at sub-toxic dose levels. If the two experiments give conflicting results or equivocal results are obtained, then a third experiment may be used to confirm the correct response. To be considered negative the number of induced revertants compared to spontaneous revertants should be less than twofold at each dose level employed, the intervals of which should be between 2 and 5 fold and extend to the limits imposed by toxicity, solubility or up to the maximum recommended dose of 5000 µg/plate. In this case the limiting factor was the maximum recommended dose.

4. ARCHIVES

Unless instructed otherwise by the sponsor, all original data and a copy of the final report will be retained in the archives of Safepharm Laboratories Limited for a period of 10 years. After this period, the sponsor's instructions will be sought.

5. RESULTS

. []

5.1 Preliminary Toxicity Study

The dose range of the test material used in the preliminary toxicity study v = 0, 50, 150, 500, 1500 and 5000 μ g/plate. The test material exhibited toxicity to the revertant colonies in bacterial strain TA100 and was non-toxic in bacterial strain WP2uvrA.

The mean numbers of revertant colonies for the toxicity assay were:

		Dose (ug/plate)		
Strain	0	50 150 500	1500	5000
TA100	69	65 69 76	54	12
WP2uvrA	16 &	11 19 2 16	10	17

5.2 Mutation Study

Prior to use the master strains were checked for characteristics, viability and spontaneous reversion rate and were all found to be satisfactory.

Results for the negative controls (spontaneous mutation rates) are presented in Table 1, Appendix I.

The individual plate counts, the mean number of revertant colonies and the standard deviations for the test material, vehicle and positive controls both with and without metabolic activation, are presented in Appendix I with the results also expressed graphically in Appendix III.

Information regarding the equipment and methods used in these experiments and the details of the personnel involved, as required by the Japanese Ministry of Labour, Japanese Ministry of International Trade and Industry and Japanese Ministry of Health and Welfare are presented as Appendix II.

The test material caused no visible reduction in the growth of the bacterial lawn at any dose level either with or without metabolic activation, however a decrease in the frequency of revertant colonies was observed with some bacterial strains.

No significant increase in the frequency of revertant colonies was recorded for any of the bacterial strains with any dose of the test material either with or without metabolic activation.

All of the positive control chemicals used in the test produced marked increases in the frequency of revertant colonies and the activity of the S9 fraction was found to be satisfactory.

6. CONCLUSION

i ()

The test material was found to be non-mutagenic under the conditions of this test.

7. REFERENCES

- Ames, B.N., Durston, W.E., Yamasaki, E., and Lee, F.D. Proc. Nat. Acad. Sci. USA (1970), 70, 2285.
- 2. Ames, B.N., McCann, J. and Yamasaki, E., Mutation Research (1975), 31, 347.
- 3. McCann, J., Coi, E., Yamasaki, E., and Ames, B.N. Proc. Nat. Acad. Sci. USA (1975) 75, 5135.
- 4. Garner, R.C., Miller, E.C., and Miller, J.A. Cancer Res. (1972), 33, 2058.
- 5. Kirkland, D.J., (Ed). Statistical Evaluation of Mutagenicity Test Data. UKEMS Sub-committee on Guidelines for Mutagenicity Testing. Report P. III (1989) Cambridge University Press.

REVERSE MUTATION ASSAY "AMES TEST" REPORT

TECHNICAL GLYPHOSATE: REVERSE MUTATION ASSAY "AMES TEST" USING SALMONELLA TYPHIMURIUM AND ESCHERICHIA COLLO A P P E N D I X I

KEY TO TABLES OF TEST RESULTS

NOTES:

- 1. When bacterial growth inhibition is found, the applicable value is marked with an asterisk.
- 2. The average number of colonies for each concentration is recorded in parentheses.
- 3. Figures immediately below the average values refer to standard deviation.
- 4. "Number of revertants" The observed values and average value are shown in order, beginning with the lowest concentration of the test substance.
- 5. The following postfixes are used when required:

'C - contaminated

P = precipitate

X = plate unscorable

TABLE 1 SPONTANEOUS MUTATION RATES

RANGE-FINDING STUDY

3.11

		N	umber of Rev	vertants (Number of Colo	onies per pla	ate) ME		
	В	ase-pair Sul	ostitution Typ	oe gioligio dos	100 ON;	Framesh	ift Type	
TA	100	TA ⁻	1535	WP2uvrA	STA CONTRACTOR	.98	TĄ	1537
91		7	Ke	12 10 0 30	12		6	
62	(74)	7	(8)	1, 01, 112 (11) (c)	10	(11)	7	(6)
68		9	All intelled	S 19 The Position	12		4	

MAIN STUDY

an ject	Number of Revertants (Number of Colonies per plate)										
EFS GUIDIGE	Base-pair Substitution Type Frameshift Type										
TA100	Chul 14	1535	WP2	uvrA ⁻	TA	N98	TA	1537			
108	18		19		28		16				
121 (123)	12	(16)	20	(20)	22	(26)	5	(11)			
141	17		20		29		12				

TABLE 2 EXPERIMENT 1 - WITHOUT METABOLIC ACTIVATION

With or Test		Number of revertants (Number of colonies per plate)							
Without	Substance concentration	Bas	e-pair substitution						
S9-Mix	(μg/plate)	TA 100	TA 1535	WP2uvrA-	TA 98	TA 1537			
-	0	117 140 11.5 127	15 13 13 2.5	20 11 (18) 24 6.7	26 (20) 15 5.7	9 (8) 9 2.3			
-	50	143 (124) 115 113	15 (17) 16 2.6	15 13 13 2.5	16 32 (25) 32 8.2	10 16 5.0 6			
	150 C. T.	119 (106) 115 19,2 84	10 (13) 10 4.6	19 24 24 3.2	19 13 13 20 3.8	9 3 3 3.1			
OSHO TO		118 119 (121) 125 3.8	14 (15) 11 4.0	16 19 (16) 14 2.5	22 20 (19) 20 3.1	11 10 (12) 10 2.1			
Shu Entil	1500	97 101 121 121	19 (13) 15 6.7	22 23 (19) 23 6.7	32 14 (21) 16 9.9	13 7 (10) 7 3.1			
	5000	101 94 20.2	13 15 2.0	26 18 (22) 23 4.0	19 26 (17) 7 9.6	8 12 (9) 7 2.6			
Positive controls	Name	ENNG	ENNG	ENNG	4NQO	9AA			
S9-Mix	Concentration (µg/plate)	3	5	2	0.2	80			
-	No. colonies per plate	313 306 301 301 (307)	755 672 335 (587) 222.4	1961 1817 (1926) 1999 96.0	176 174 18.5 143	170 341 278 86.5			

ENNG N-ethyl-N'-nitro-N-nitrosoguanidine

4NQO 4-nitroquinoline-1-oxide

9AA 9-aminoacridine

TABLE 3 EXPERIMENT 1 - WITH METABOLIC ACTIVATION

1		<u> </u>	T T		<i>ii, 46</i>	2, 40, 40,				
ĺ	With or Test		Number of revertants (Number of colonies per plate)							
	Without	Substance concentration	Bas	e-pair substitution	Frameshift type					
	S9-Mix	(μg/plate)	TA 100	TA 1535	WP2uvrA	TA 98	TA 1537			
	+	0	109 125 114 109 (116) 8.2.	9 10 10 3.8	14 15 (18) 26 6.7	27 48 10.8 33	11 10 10 4.4			
	+	50	94 (105) 119 101	10 (10) 12 2.0 8	14 12 18 18	29 35 33 33	10 5 5 3.6			
	+	150 S	117 86 15.6	9 (10) 7 4.2	14 18 18 4.0	32 28 (29) 28 2.6	14 9 (12) 9 2.9 14			
	oeki ok	500	105 117 132 13.5	11 12 10 10	15 19 3.1 21	19 34 9.0 35	10 7 (11) 7 4.0			
0.	July Sund	1500	97 100 81 97 103 10.2	8 (11) 14 3.1	17 19 (20) 23 3.1	27 40 40 8.1	7 11 (10) 12 2.6			
<u></u>	+	5000	122 131 (116) 18.7	10 10 (10) 11 0.6	28 17 5.5 22	27 (36) 38 8.6 44	12 8 (11) 8 2.3			
	Positive controls	Name	2AA	2AA	2AA	2AA	2A.A			
	S9-Mix	Concentration (µg/plate)	1	2	10	0.5	2			
	+	No. colonies per plate	388 482 69.2 347	107 111 (110) 111 2.3	528 741 579 (616)	873 (981) 1043 93.9 1027	127 (148) 146 21.5			

: []

T A B L E 4 EXPERIMENT 2 - WITHOUT METABOLIC ACTIVATION

With or	Test	Number of revertants (Number of colonies per plate)							
Without	concentration		Base-pair substitution type Frameshift type						
S9-Mix	(μg/plate)	TA 100	TA 1535	WP2uvrA-	TA 98	TA 1537			
-	0	163 (156) 144 10.7 162	33 (38) 46 7.0	21 28 28 8.0	27 33 (32) 37 5.0	17 16 16 15			
-	50	164 167 166 166	41 43 (42) 41 1,2	24 (25) 24 1.7	30 (34) 41 5.9 32	17 12 (14) 12 2.6			
-	t50	165 167 (165) 162 2,5	30 37 37 4.0	17 22 (18) 22 3.2	31 37 6.5 24	11 16 (11) 7 4.5			
oety may	11 1/1 Oc	151 154 152 152	36 (33) 26 5.8 36	85 (43) 32 37.3 13	20 33 7.0 31	9 16 5.1			
any pi	1500	154 (147) 143 5.9 145	20 26 7.0 34	11 14 (13) 14 1.7	28 42 (33) 42 8.1	10 10 10 3.5 16			
-	5000	68 87 9.5 78	30 30 0.6 29	16 21 2.9 21	5 (13) 18 7.2 17	6 8 8 1.5			
Positive controls	Name	ENNG	ENNG	ENNG	4NQO	9AA			
S9-Mix	Concentration (µg/plate)	3	5	2	0.2	80			
-	No. colonies per plate	722 693 761 761 725)	493 466 487 487	995 974 15.0 1003	145 (183) 164 50.8 241	846 738 137.5			

ENNG N-Ethyl-N'-nitro-N-nitrosoguanidine

4NQO 4-nitroquinoline-1-oxide

9AA 9-Aminoacridine

TABLE 5 EXPERIMENT 2 - WITH METABOLIC ACTIVATION

	With or	Test	Number of revertants (Number of colonies per plate)							
	Without Substance concentration		Bas	e-pair substitution	Frameshift type TA 98 TA 1537					
	S9-Mix	(μg/plate)	TA 100	TA 1535	WP2uvrA-	TA 98	TA 1537			
	+	0	132 (149) 166 17.0 150	19 21 (17) 11 5.3	31 25 (27) 26 3.2	27 49 11.9	11 9 (11) 2.5			
	+	50	153 127 127 145	18 10 10 4.6	24 28 (25) 23 2.6	38 25 25 6.7	7 8 (7) 6			
	+	150° 50°	146 (141) 146 8.7	9 (13) 17 4.0	24 24 (25) 24 2.3	34 36 4.2 28	12 8 (13) 8 5.6			
	OBITY MO	De Sillisi		14 10 (13) 16 3.1	28 (23) 22 5.0	35 31 40 4.5	9 10 (11) 13 2.1			
0,00	aud b	1100 E. 111. 17	108 105 105 5.1	20 13 (14) 10 5.1	25 21 (22) 21 2.3	30 29 (28) 25 2.6	13 10 (11) 10 1.7			
Se	+	5000	80 121 121 23.7	7 (8) 8 1.5	14 16 1.0 15	33 25 7.0 39	4 7 (7) 7 3.5			
	Positive controls	Name	2AA	2AA	2AA	2AA	2AA			
	S9-Mix	Concentration (µg/plate)	Ī	2	10	0.5	2			
	+	No. colonies per plate	594 (585) 608 28.0 554	109 112 (110) 110 1.5	273 (248) 226 23.7 244	269 (287) 256 43.5 337	189 239 28.3 237			

TECHNICAL GLYPHOSATE: REVERSE MUTATION ASSAY "AMES TEST USING SALMONELLA TYPHIMURIUM AND ESCHERICHIA COLI APPENDIX II

REPORT OF RESULTS IN MUTAGENICITY TEST USING MICRO-ORGANISMS (INDUSTRIAL SAFETY AND HEALTH LAW)

1.

1.11

1. GENERAL ITEMS	(to be complet	ted l	by the spon	sar) (edine e	Mei	.*	
Name of the new chemical substance (IUPAC nomenclature)	N-(phosphonome	to be completed by the sponsor) N-(phosphonomethyl)glycine TECHNICAL GLYPHOSATE					
Other name	TECHNICAL GLY	/PHO	SATE				
Structural formula or rational formula (or outline of manufacturing method, in case both are unknown)	Political Ho	HO II P.CH ₂ .NH.CH ₂ COOH					
Purity of the new chemical substance tested	95% Lot no. of the new chemical substance tested						
Name and concentration of impurities	Mileter Collection				·——		
CAS No. O THE			Vapour pressure		1	94×10 ⁻⁷ mm Hg at	
Molecular weight			Partition coeff	icient	T		
Melting point	230°C		Appearance a	t ordinary	W	hite to off-white	
Boiling point			temperature		cry	⁄stals	
Stability	Stable for >2 year	ars un	der normal stor	age conditions	<u> </u>		
Degree of solubility in solvent	Solvent	1 1	gree of ability	Solvent		Degree of solubility	
	Water	sust	eable pension at mg/ml	DMSO	•		
•	Acetone		,	Others ()			

TECHNICAL GLYPHOSATE: REVERSE MUTATION ASSAY "AMES TEST" USING SALMONELLA TYPHIMURIUM AND ESCHERICHIA COLI APPENDIXII (continued)

2. TESTER STRAINS

. []

(1) Procurement

Test strain	Obtained from	Date obtained	Strain check date for coded stock cultures used for this study
TA100	UCB**	4 August 1995	05.08.95 (range-finding study) 17.10.95 (main study)
TA1535	UCB**	4 August 1995	05.08.95 (range-finding study) 17.10.95 (main study)
WP2uvrA	BIBRA	14 August 1987	05.08.95 (range-finding study) 17.10.95 (main study)
TA98	COLUMN TO THE STATE OF THE STAT	4 August 1995	05.08.95 (range-finding study) 17.10.95 (main study)
TA1537	CB**	4 August 1995	05.08.95 (range-finding study) 17.10.95 (main study)

*BIBRA: British Industrial Biological Research Association

**UCB: University of California at Berkeley

(2) Storage

(Encircle the applicable number and fill in the relevant entries)

Storage method	Freezing in small aliquot Freezing in large aliquot Others ()	
Storage temperature	-196°C	
	Bacterial suspension: 8.0 ml	DMSO: 0.7 ml
Composition	Others ():	

3. S9-MIX

(1) Source of S9

(Encircle the applicable number and fill in the relevant entries)

(Ellellele the application	(Ellericio III d'Espirazione				
Made in-house or purchase	1.) Made in-house	Purchase (Supplier BIBRA*)			
Prepared on	09.08.95 (range-finding study) and 11.10.95 (main study)				
Lot No. (in case of purchase)					
Storage temperature	-19	6'C			

SPL PROJECT NUMBER: 434/014

TECHNICAL GLYPHOSATE: REVERSE MUTATION ASSAY "AMES TEST" USING SALMONELLA TYPHIMURIUM AND ESCHERICHIA COLI A P P E N D I X I I (continued)

3. S9-MIX (continued)

(2) Preparation of \$9

A	nimal used	Inducing substance			
Species strain	Rat Sprague-Dawley	Name Name	AROCLOR 1254	7	
Sex	Male	Administration method	single i.p. injection		
Age (in weeks)	7 weeks	Administration period and	5 days		
Weight	~ 200g	amount (g/kg body weight)	0.5 g/kg	_	

(3) Composition of S9-Mix

Constituents	Amount in 1 ml S9-Mix	Constituents	Amount in 1 ml S9-Mix
\$9	0.1 ml jill jil	NADPH	μmol
MgCl ₂	8.0 µmol	NADH	µmol
KCI (S)	33.0 µmal	Na-phosphate buffer	100.0 µmol
Glucose-6-phosphate	5.0 umol	Others (NADP)	4.0 <i>µ</i> mol
Glucose-6-phosphate dehydrogenase	UELIT HIELE		

4. POSITIVE CONTROLS AND SOLVENT FOR POSITIVE CONTROLS

(Encircle the applicable number and fill in the relevant entries)

Substance name		Supplier	Lot No.	Grade	Purity (%)	Solvent	
	ENNG	SIGMA	67F-3700	Technical	97	DMSO	
Ì	4NQO	SIGMA	33H 2517	Technical	99	DMSO	
Positive	9AA	SIGMA	96F-05641	Technical	98	DMSO	
control	2AA	SIGMA	121H3475	Technical	97.5	DMSO	
Solvent	DMSO	SIGMA	103H0433		99.5	SIGMA	
Preparation and storage of positive control		1. Freshly p	repared	. (2.) Sto	rage in small aliq	uot	
		/ .	1.		(Storage temperature -20°C)		
		3. Others ()		

SPL PROJECT NUMBER: 434/014

TECHNICAL GLYPHOSATE: REVERSE MUTATION ASSAY "AMES TEST! USING SALMONELLA TYPHIMURIUM AND ESCHERICHIA COLI A P P E N D I X I I (continued)

5. PREPARATION OF THE TEST MATERIAL IN SOLUTION

(Encircle the applicable response regarding purity conversion)

	Name	Supplier	Lot No.	Grade	Purity (%)
Salvent used	Sterile distilled	Steripak	401038	***************************************	
	water	, 0, 004	401019	Wel.	
Stability of test substance in		ojo, brilois	COLLANISO		<u></u>
solvent	ille	14 31 30 3C	The of the		
Reason for selection of solvent	Doseable suspension at 50 mg/ml				
Suspension and other methods	Sto Jo	10, 110 E10,	(C)		
when test substance difficult to	fill chile on	distribute it			
dissolve	is talled a long	is be diolo			
Storage time and temperature of	1½ hrs room ter	nperature (range-	finding study)		
solution from preparation until use	is of the same of the same	200			
wints so	25 mins room te	mperature (main	study)		
Conversion of purity	a Her ble	Yes	No		

6. CONDITIONS ETC. OF PRE-CULTURE

(1) Conditions

- [3]

2. 60 PM 0. 900	Name	Manufacturer	Lot No.
Nutrient Broth	Oxoid	Oxoid Ltd.	130 54491 4/99
Period of pre-culture	10 hr	THE PARTY OF THE P	
Storage time and temperature of cultures from inoculation until shaking	Approx 6½ hours a	it room temperature	`
Storage time and temperature of cultures from shaking to harvest	Up to 10 hours at r	oom temperature	
Shaking method (shaking type and frequency)	Orbital shaker 130 revs/min, 37°C		
Culture flask (form, size)	Plastic universal con	ntainer, 50 ml	
Amount of culture medium	. 5 ml	Amount of strain inoculated	20 <i>µ</i> l

6. CONDITIONS ETC. OF PRE-CULTURE (continued)

(2) Cell viability at the end of pre-culture

		Base-pai	Base-pair substitution type			Frameshift type		
		TA100	TA1535	WP2uvrA	0	TA98	TA1537	
Cell number (x 10 ⁹ /ml)	Range-finding study	9.0	7.6	2.4	il is off	3.8	6.3	
	Main study	6.2	6.2		OULL	4.9	4.0	
Count method (encircle the appli	icable number)		wise diluti	m O.D. value on method	ing of		1	1

7. AGAR PLATE MEDIUM

(1) Top Agar

: []

	Name	Difco-Bacto agar
Top Agar	Manufacturer	Difco
31.09	Lot No.	71889 AJB 5/00 and 55284 AJA 8/99

(2) Minimum Glucose Agar Plate Medium

(Encircle the applicable number and fill in the relevant entries)

Made in-house or purchase	(1.) Made in-house 2. Purchase (supplier)
Prepared on	15.08.95 (range-finding study) 24.10.95 (main study)
Lot No. in case purchase	
Name of supplier and lot no. of the used agar	Oxoid Ltd. Oxoid Technical No.3, Lot Nos. B061 90268 1/00 (range-finding study) 214 94981 7/00 (main study)

8. STERILITY TEST (Encircle the applicable response in the right hand column)

	Bacterial grov	Bacterial growth other than expected		
Test substance solution	Yes	. (No)		
S9-Mix	Yes	(No)		

TECHNICAL GLYPHOSATE: REVERSE MUTATION ASSAY "AMES TEST" USING SALMONELLA TYPHIMURIUM AND ESCHERICHIA COLI APPENDIX II (continued)

9. TEST METHOD

			70,
		Pre-incubation	Plate Method
	Bacterial suspension	i Pull im region	0.1 ml
	Test substance solution	The Contemporary	0.1 ml
	Na-phosphate buffer	TO THE CONTROL	0.5 ml
Composition	S9-mix (in case of metabolic activation method)	of the milities	0.5 ml
	Top agar solution	S ml	2.0 ml
	Others (6 9 110°	
Pre-incubation	Temperature	.c	
	Time of Citots White	min	
Incubation	Temperature	.c	37°C
3100	Time	hours	48 hours

10. COUNT METHOD OF COLONIES (Encircle 1 and 2 if both methods are used)

	Count method	1. By hand	2. Colony counter	
26	Reason why both methods were used			
	Name, type and manufacture of colony counter	SEESCAN COLONY METER		
	Correction method	No correction Miscount-correction Area and miscount-correction	2. Area-correction	

11. TEST RESULTS

. 3

- (1) The results should be reported on the attached form
- (2) Judgement of the results

Judgement (encircle one)	Positive Negative Negative
Reason for judgement and referential ma	tters: No significant increase in the frequency of revertant colonies was
recorded for any bacterial strain used with	any dose of the test material in two separate experiments either with or
without metabolic activation. A statistical	analysis of the data was not required to determine the result of the test.

An allowance for purity (95%) was made prior to test material formulation. A reduction in the frequency of revertant

colonies was observed with some bacterial strains.

NADPH was not added to the S9 co-factors, however, NADPH is generated in-situ by the addition of the NADP and excess G-6-P and this is considered to be equivalent to direct addition of NADPH. Aroclor 1254 was used to induce higher enzyme levels in the rat liver S9. Aroclor 1254 is considered to be equally effective as the use of the equivalent combination of phenobarbital, 5,6-benzoflavone and methylcholanthrene.

12. OTHERS

01/1/06 3 1/1/1	Name	Safepharm Laboratories Ltd.		
10 20 010 10 10 10 10 10 10 10 10 10 10 10 1	Address	P.O. Box 45, Derby, United Kingdom		
Administrator	Title	Head of Genetic Toxicology	Name	
Archives Director	Ditle	Head of Quality Assurance	Name	
VIII. S.	Title	Study Director - Genetic Toxicology	Name	
Study Director	Years of	experience: 8		
	Title	Genetic Toxicologist	Name	'
	Years of	experience: 7		
Personnel engaged in study	Title	Leading Technican - Genetic Toxicology	Name	
	Years of e	experience: 1		
From: 19.08:9		9.08:95	To: 13.	11.95
rest dates	Protocol :	authorised: 15.05.95	Final rep	ort authorised: 20. FEB. 1996
Study number	434/014		14	•

TECHNICAL GLYPHOSATE: REVERSE MUTATION ASSAY "AMES TEST" USING SALMONELLA TYPHIMURIUM AND ESCHERICHIA COLI APPENDIX II (continued)

REPORT OF RESULTS OF REVERSE-MUTATION ASSAY IN BACTERIA

[1] GENERAL ITEMS

			Co HUI	- ilio	
Name of the new chemical substance (IUPAC nomenclature)	N-(phosphonometh)	yl)glycine		stor.	
Other name	TECHNICAL GLYPH	HOSATE	Molecular w	eight	
Structural formula or rational formula (or	HO II &	Och Old Sulor	Appearance temperature	at ordinary	white to off- white crystals
chemical substance (IUPAC nomenclature) Other name Structural formula or rational formula (or outline of manufacturing method, in case both are unknown) Purity of the new chemical substance tested	P.CH ₂ .N	H.CH ₂ COOH	Stability		Stable for > 2 years under normal storage conditions
ijde	s sud stion in	hipites	Melting poin	t	230°C
, is 910 (10)	ent the opposite of	0,	Boiling point		
ite y suite in it	or of the state		Vapour press	ure	1.94x10 ⁻⁷ mmHg at 45 °C
Purity of the new	Tal.	Physicochemical	Partition coef	ficient	
chemical substance	95%	properties of the	Solubility		
Gested Pilos Fills		new chemical substance	Degree of solubility	Water	Doseable suspension at 50 mg/ml
				DMSO	
TVERTO ETTE COTTECTATE COTT				Acetone	
of impurities		·		Others	• • • • • • • • • • • • • • • • • • • •

- 1. "STABILITY" Fill in the stability for water, other solvents, heat, light, etc.
- 2. "VAPOUR PRESSURE" Fill in the vapour pressure of the test substance at 25°C
- 3. "PARTITION COEFFICIENT" Fill in the value, the temperature used and the name of solvent used for the measurement.
- 4. "SOLUBILITY" Fill in such information as water soluble, soluble in oil.
- 5. "DEGREE OF SOLUBILITY" Fill in the solubility at 25°C for each solvent.

SPL PROJECT NUMBER: 434/014

TECHNICAL GLYPHOSATE: REVERSE MUTATION ASSAY "AMES TEST" USING SALMONELLA TYPHIMURIUM AND ESCHERICHIA COLI A P P E N D I X I I (continued)

[2] TESTER STRAINS

1.[]

(1) Procurement

Obtained from	Date obtained
British Industrial Biological Research Association (E. coli strain WP2uvrA)	14 August 1987
University of California at Berkeley (Salmonella strains)	4 August 1995

(2) Storage

Storage temperature	Composition
40,04	Bacterial suspension 8.0 ml
-196°C	DMSO 0.7 ml
- 1/2/18C1 (82);	Others () ml

[3] S9-MIX

(1) Source of \$9 (Encircle the applicable number and fill in the entries)

1. Made-in house	Prepared on 09,08.95 and 11.10.95	(date)
11/62	Supplier	
CP 3100 X	Prepared on	(date)
EKS, Elling	Purchased on	(date)
2. Purchase	Lot number	

(2) Storage Temperature, etc. of S9

3	Storage Temperature	-196°C	Name and model of	Statebourne SXR 34
ı	SL, HU		storage apparatus	

(3) Preparation of S9 (If purchased material, fill in spaces to extent possible)

Anin	nal used	Inducing si	ubstance
Species, strain	Rat, Sprague-Dawley	Name	Aroclor 1254
Sex	Male	Administration method	Single i.p. injection
Age (in weeks)	7 weeks	Administration period and amount	5 days
Weight	~ 200g	(g/kg weight)	0.5 g/kg

(4) Composition of S9-Mix

Constituents	Amount in 1 ml S9-Mix	· Constituents	Amount in 1 ml 59-Mix
S9	0.1 ml	NADPH .	μmol
MgCl ₂	8.0 µmol	NADP	4.0 µmol
Glucose-6-phosphate dehydrogenase		Na-phosphate buffer pH 7.4	100.0 µmol
KCI	33.0 µmol		
Glucose-6-phosphate	5.0 µmol	Others (*)	-

TECHNICAL GLYPHOSATE: REVERSE MUTATION ASSAY "AMES TEST" USING SALMONELLA TYPHIMURIUM AND ESCHERICHIA COLI APPENDIXII (continued)

[4] PREPARATION OF THE SOLUTION OF THE TEST SUBSTANCE

Solvent used	Method of suspension etc. when test substance is difficult to dissolve
Sterile distilled water	"C 30 to "INO 8 to"

[5] CONDITIONS OF PRE-CULTURE

Name of nutrient broth and manufacturer	10 °6	Oxold Ltd., UK Nutrient Broth	1
Period of pre-culture	Keck olok	10 hours	•

[6] MINIMUM GLUCOSE AGAR PLATE MEDIUM (Encircle the applicable number and fill in the relevant entries)

	Name S (1)	Oxoid Technical No. 3
O Solio	Agar Manufacturer	Oxoid Ltd., U.K.
1. Made in-house	Lot Numbers	B061 90268 1/00 (range-finding study)
Charles A		214 94981 7/00 (main study)
CKS SURVIS	Volume of agar plate medium	30 ml
10, 40 6. 9ig	Manufacturer	
Eligh Washington, 90	Prepared on	
2. Purchase	Purchased on	
in English of 90ch	Lot number	
	I	

[7] STERILITY TEST (Encircle the applicable response in the right hand column)

	Bacterial growth other than those used for test		
Test substance solution	Yes	(No)	
S9-Mix	Yes (No)	

[8] TEST METHOD

(1) Test Method (Encircle the applicable number)

 Pre-incubation method 		
·		
2. Plate method	•	

SPL PROJECT NUMBER: 434/014

TECHNICAL GLYPHOSATE: REVERSE MUTATION ASSAY "AMES TEST USING SALMONELLA TYPHIMURIUM AND ESCHERICHIA COLLA A P P E N D I X 1 1 (continued)

[8] TEST METHOD (continued)

(2) Test Condition

: []

		Pre-incubation method	Plate method	
	Bacterial suspension	in with all s	0.1 ml	
	Test substance solution	(1) (m) (10,00)	0.1 ml	
	Na-phosphate buffer	10 00 ml 10 100 1	0.5 ml	
Composition	S9-Mix (in case of metabolic activation method)	STORY OF STATE OF THE	0.5 ml	
	Top agar solution	To alo will the	2.0 ml	
	Others (10,000	-	
Pre-incubation	Temperature	200 000		
	Time O O O	© o min.		
Incubation	Temperature	S 72 .C	37°C	
	Time of the of the	hours	48 hours	

[9] TEST RESULTS

- (1) Test results should be reported on the attached form
- (2) Judgement of the results

Judgement (Encircle one)	Positive	Negative	
Reason for judgement: No significant increase in the frequency of revertant colonies was recorded for any bacterial			
strain used with any dose of the test material in two se	enarate experiments either	with or without metabolic activation	

NADPH was not added to the S9 co-factors, however, NADPH is generated in-situ by the addition of NADP and excess G-6-P and this is considered to be equivalent to direct addition of NADPH. Aroclor 1254 was used to induce higher enzyme levels in the rat liver S9. Aroclor 1254 is considered to be equally effective as the use of the equivalent combination of phenobarbital,5,6-benzoflavone and methylcholanthrene.

(3) Referential matters

An allowance for purity (95%) was made prior to test material formulation. A reduction in the frequency of revertant colonies was observed with some bacterial strains.

A statistical analysis of the data was not required to determine the result of the test.

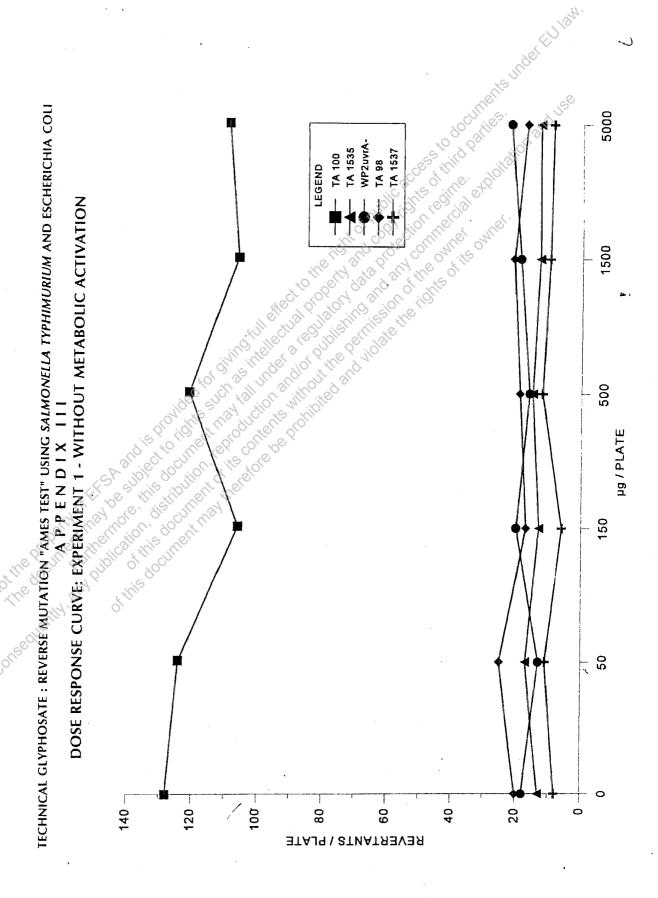
[REMARK] "Referential matters" - (fill in the view etc. of the Study Director on the test results)

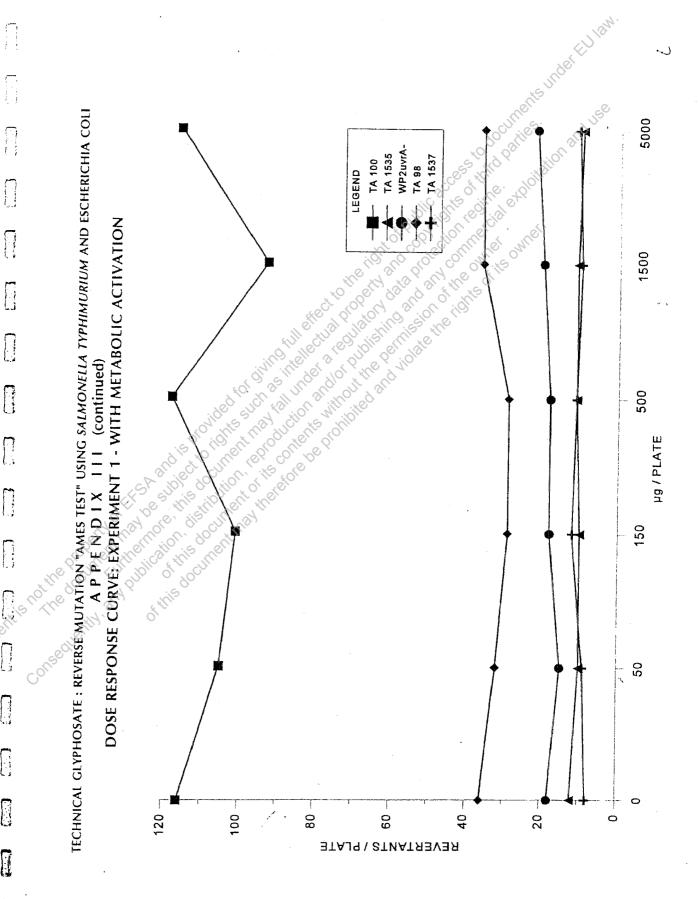
[10] OTHERS

Testing Institution	Institution Name Safepharm Laboratories Ltd.	
	Address P.O. Box 45, D	DERBY, UK Telephon
Study Director	Name	Signature
Test Dates	From: 19.08.95	To: 13.11.95
	Protocol authorised: 15.05.9	5 Final report authorised: 20, FEB 1996

TABLE OF TEST RESULTS (RELATIVE ACTIVITY)

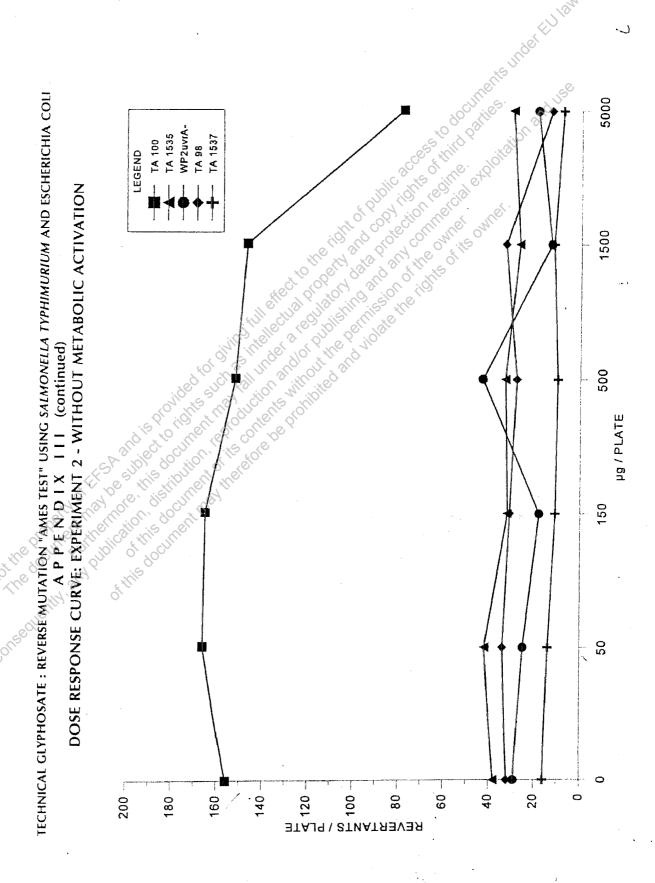
TEST SUBSTANCE: TECHNICAL GLYPHOSATE

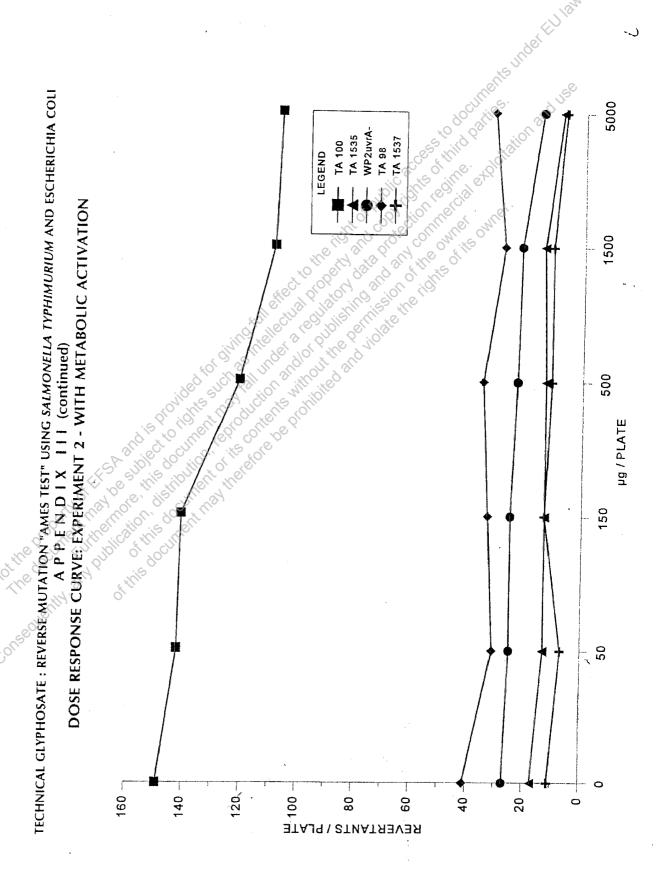

: 1


,	T	Elegiptical Company of the Company o			
		- S9-Mix		+ S9-Mix	
		Relative activity	Dose Levels used to calculate	Relative activity	Dose levels used to calculate
	TA100	We dill	shiring to his	N/A	
Danie Gartina	TA1535	STOR NA CON	e Pijor	N/A	
Range-finding Study	WP2uvrA	UN MA OUT	all.	N/A	
,	TA98	Silol MAN ililie		N/A	***************************************
· V	TA1537	N/A		N/A	
	CI CHILL (C)	CO CO			
Main Study	TA100	N/A		N/A	
	TA1535	N/A		N/A	
	WP2uvrA	N/A		. N/A	
	TA98	N/A		N/A	
any Po wis	TA1537	N/A		N/A	
17° 01					
					• •

N/A = not applicable as no evidence of mutagenic activity was observed

. []


I



. []

THE STREET

APPENDIX IV

THE DEPARTMENT OF HEALTH OF THE GOVERNMENT OF THE UNITED KINGDOM

GOOD LABORATORY PRACTICE

STATEMENT OF COMPLIANCE IN ACCORDANCE WITH DIRECTIVE 88/320 EEC

LABORATORY

SafePharm Laboratories Limited Derby Del 281 \$ 0 Bo. Wo 45

31 January 1994

A general inspection for compliance with the Principles of Good Laboratory Practice was carried out at the above laboratory as part of the UK GLP Compliance Programme.

At the time of the inspection no deviations were found of sufficient magnitude to affect the validity of studies performed at these facilities.

Director

UK GLP Monitoring Unit