haran

HARLAN CCR STUDY 1332300 Harland And Andrew SALMONELLA SALMONELLA TYPHIMURIUM
AND
ESCHERICHIA COLI
REVERSE MUTATI

WITH

Solution of Glyphosate TC spiked with Solution of C Glyphosine

REPORT

STUDY COMPLETION DATE: APRIL 07, 2010

1 COPY OF GLP CERTIFICATE

Gute Laborpraxis/Good Laboratory Practice

(gemäß/according to § 19b Abs. 1 Chemikaliengesetz) GLP-Bescheinigung/Statement of GLP Compliance

Eine GLP-Inspektion zur Überwachung der Einhaltung der GLP-Grundsätze gemäß Chemikaliengesetz bzw. Richtlinie 2004/9/EG wurde durchgeführt in

Assessment of conformity with GLP according to Chemikaliengesetz and Directive 2004/9/EEC at:

Prüfeinrichtung/Test facility | Prüfstandori/Test site

Harlan Cytotest Cell Research GmbH Harian Cytonest Cell Research GmbH In den Leppsteinswiesen 19 64380 Rosdon

(Unverwechselbare Bezeichnung und Adresse Unequivocal name and adress)

Prüfungen nach Kategorien/Areas of Expertise (gemilifaccording choin VwV GLP Nr. 5.3/OECD guidance)

- Prüfungen zur Bestimmung der tockkologischen Eigenschaften
 3 Prüfungen zur Bestimmung der erbgutverändenden Eigenschaften fin vitre und in vivol
 6 Prüfungen zur Bestimmung von Rücksfünden
 8 Analytische Prüfungen an biologischen Materialien
- 2 Toxicity studies
- 3 Mutagenicity studies
- 6 Residues 8 Analytical studies on biological materials

15.08, und 27. – 29.10.2008

Datum der Inspektion Date of Inspection (Tag Monat Jahr/day month year)

The above mentioned test facility is included in the national GLP Compliance Programme and is inspected on a regular basis.

Die genannte Prüfeinrichtung befindet sich im nationalen GLP-Grundsätze durchge des fragelten und vor der der erspettverein aungen zur Bestimmung von Nickständen 8 Analytische Prüfangen an biologischen Materialie

15.08. und Datum der Inspek (Tag Monat Ja Die genannte Prüfeinrichtung befindet sich im nationalen GLP-Grundsätze überwacht.

Auf der Grundlage des Inspektionsberichtes wird hiermit bestätigt, dass in dieser Prüfeinrichtung die oben genannten Prüfungen unter Einhaltung der GLP-Grundsätze überwacht.

Based on the inspection report it can be confirmed, that this test facility is able to conduct the aforementioned studies in compliance with the Principles of GLP

Referent, Wiesbaden, den 30. März 2009 (Name und Funktion der verantwortlichen Person) Name and function of responsible person)

Hess. Ministerium für Umwelt, Energie, Landwirtschaft und Verbraucherschutz,

Mainzer Straße 80 D65189 Wiesbaden (Name und Adresse der GLP-Überwachungsbehörde/Name and address of the GLP Monitoring Authority

Solution of Glyphosate TC spiked with Glyphosine

2 CONTENTS 1 COPY OF GLP CERTIFICATE 2 2 CONTENTS 3 3 PREFACE 4 3.1 General 4 3.2 Responsibilities 4 3.3 Schedule 4 3.4 Project Staff Signatures 5 3.5 Good Laboratory Practice 5 3.6 Guidelines 5 3.7 Archiving 5 3.8 Deviations to Study Plan 6 4 STATEMENT OF COMPLIANCE 7 5 STATEMENT OF QUALITY ASSURANCE UNIT 8
1 COPY OF GLP CERTIFICATE 2 CONTENTS 3 PREFACE 3.1 General 3.2 Responsibilities 4.3.3 Schedule 3.4 Project Staff Signatures 3.5 Good Laboratory Practice 3.6 Guidelines 3.7 Archiving 3.8 Deviations to Study Plan 4 STATEMENT OF COMPLIANCE 5 STATEMENT OF QUALITY ASSURANCE UNIT 6 SUMMARY OF RESULTS 6.1 Conclusion 7 OBJECTIVE 7.1 Aims of the Study 7.2 Reasons for the Study 8 MATERIALS AND METHODS 11 8.1 Test Item 12 8.2 Controls 8.3 Test System 14 8.4 Mammalian Microsomal Fraction S9 Mix 8.5 Pre-Experiment for Toxicity 17 8.6 Dose Selection 17
2 CONTENTS 3
3 PREFACE
3.1 General 4
3.2 Responsibilities 4
3.3 Schedule 4
3.4 Project Staff Signatures 5
3.5 Good Laboratory Practice 5
3.6 Guidelines 5
3.7 Archiving 5
3.8 Deviations to Study Plan
4 STATEMENT OF COMPLIANCE 7
3.4 Project Staff Signatures 3.5 Good Laboratory Practice 3.6 Guidelines 3.7 Archiving 3.8 Deviations to Study Plan 4 STATEMENT OF COMPLIANCE 5 STATEMENT OF QUALITY ASSURANCE UNIT 6 SUMMARY OF RESULTS 6.1 Conclusion 7 OBJECTIVE 7.1 Aims of the Study 7.2 Reasons for the Study 8 MATERIALS AND METHODS 11 8.1 Test Item 8.2 Controls 8.3 Test System 14 8.4 Mammalian Microsomal Fraction S9 Mix 16 8.5 Pre-Experiment for Toxicity 17 8.6 Dose Selection 17 8.7 Experimental Performance 18 8.9 Acceptability of the Assay 8.10 Evaluation of Results 8.11 Biometry 18
6 SUMMARY OF RESULTS 9
6.1 Conclusion
7 OBJECTIVE 10
7.1 Aims of the Study
7.2 Reasons for the Study
8 MATERIALS AND METHODS 11
8.1 Test Item
8.2 Controls 13
8.3 Test System 14
8.4 Mammalian Microsomal Fraction S9 Mix 16
8.5 Pre-Experiment for Toxicity 1/
8.6 Dose Selection 17
8.7 Experimental Renormance 17
8.8 Data Recording
8.6 Dose Selection 17 8.7 Experimental Performance 17 8.8 Data Recording 18 8.9 Acceptability of the Assay 18 8.10 Evaluation of Results 18 8.11 Biometry 18
8.10 Evaluation of Results 18 8.11 Biometry 18
9 DISCUSSION OF RESULTS
10 REFERENCES 20
11 DISTRIBUTION OF THE REPORT 20
12 SUMMARY OF RESULTS 21
12.1 Summary of Results Pre-Experiment and Experiment I 21
12.2 Summary of Results Experiment II 22
8.6 Dose Selection 17 8.7 Experimental Performance 17 8.8 Data Recording 18 8.9 Acceptability of the Assay 18 8.10 Evaluation of Results 18 8.11 Biometry 18 9 DISCUSSION OF RESULTS 19 10 REFERENCES 20 11 DISTRIBUTION OF THE REPORT 20 12 SUMMARY OF RESULTS 21 12.1 Summary of Results Pre-Experiment and Experiment I 21 12.2 Summary of Results Experiment II 22 13 HISTORICAL CONTROL DATA 23
14 ANNEX I: TABLES OF RESULTS (8 PAGES) 24
15 ANNEX II: CERTIFICATES OF ANALYSIS 33

PREFACE

3.1 General

Title: Salmonella typhimurium and Escherichia coli

> Reverse Mutation Assay with Solution of Glyphosate TC spiked with Glyphosine

Sponsor: Helm AG

Nordkanalstrasse 28 20097 Hamburg/Germany

Study Monitor: Dr

Harlan \ Test Facility:

Cytotest Cell Research GmbH (Harlan CCR)

In den Leppsteinswiesen 19 64380 Rossdorf/Germany

Harlan Laboratories Ltd. 4452 Itingen/Switzerland Contracting Institute:

Reference No.:

3.2 Responsibilities

Study Director: 85 Dipl. Biol.

Deputy Study Director: Dr.

Management: Dr.

Head of Quality Assurance Unit:

3.3 Schedule

March 17, 2010 Experimental Starting Date: Experimental Completion Date: March 22, 2010

s4c2dr.doc

3.4 Project Staff Signatures

Study Director

3.5 Good Laboratory Practice

The study was performed in compliance with

"Chemikaliengesetz" (Chemicals Act) of the Federal Republic of Germany, "Anhang 1" (Annex 1), in its currently valid version.

"OECD Principles of Good Laboratory Practice", as revised in 1997 [C(97)186/Final]

3.6 Guidelines

This study followed the procedures indicated by the following internationally accepted guidelines and recommendations:

"Ninth Addendum to OECD Guidelines for Testing of Chemicals", Section 4, No. 471: "Bacterial Reverse Mutation Test", adopted July 21, 1997

"Commission Regulation (EC) No. 440/2008 B13/14", dated May 30, 2008

Archiving

Harlan CCR will archive:

Raw data, study plan, report, and specimens (if any) for at least 3 years at the test facility's archive. Thereafter, the material will be transferred to the GLP archive of Harlan Laboratories Ltd. in Füllinsdorf, Switzerland for archiving the remaining time up to a total archiving period of 15 years. No data will be discarded without the sponsor's written consent.

A sample of the test item will be archived two years after the expiration date provided by the sponsor. If no expiration date is given, the archiving period will be the required 15 years. Thereafter the samples will be discarded without further notice.

3.8 Deviations to Study Plan

- 1. Contracting Institute and Reference No. were added.
- . outcome of this study.

 Outc The second experiment was performed before the results of experiment I were available. These deviations had no detrimental impact on the outcome of this study.

STATEMENT OF COMPLIANCE

Harlan CCR Study:

1332300

Test Item:

Solution of Glyphosate TC spiked with Glyphosine

Study Director:

Dipl. Biol

Title:

Salmonella typhimurium and Escherichia coli

Reverse Mutation Assay with Solution of Glyphosate

TC spiked with Glyphosine

Report

This study performed in the test facility of Harlan CCR was conducted in compliance with Good Laboratory Practice Regulations:

"Chemikaliengesetz" (Chemicals Act) of the Federal Republic of Germany, "Anhang 1" (Annex 1), in its currently valid version.

ay Directors that may Directors that may Directors that may be sold the best of the boundary o "OECD Principles of Good Laboratory Practice" as revised in 1997 [C(97)186/Final].

There were no circumstances that may have affected the quality or integrity of the study.

Dipl. Biol.

Date: April 07, 2010

s4c2dr.doc

STATEMENT OF QUALITY ASSURANCE UNIT

Harlan CCR Study:

1332300

Test Item:

Solution of Glyphosate TC spiked with Glyphosine

Study Director:

Dipt. Biot.

Title:

Salmonella typhimurium and Escherichia coli

Reverse Mutation Assay with Solution of Glyphosate

TC spiked with Glyphosine &

The general facilities and activities of Harlan CCR are inspected periodically and the results are reported to the responsible person and the management.

Study procedures were inspected periodically. The study plan and this report were audited by the Quality Assurance Unit. The dates are given below.

Phases and Dates of (Study Plan:	QAU Inspections/ Audits March 16, 2010 March 18, 2010 April 06, 2010	Dates of Reports to the Study Director and to Management
Study Flatt.	WEIGHT 10, 2010	March 16, 2010
Process inspection Preparation for application:	March 18, 2010	March 18, 2010
Report: 8	April 06, 2010	April 06, 2010
Study Plan: Process Inspection Preparation for application: Report: This statement is to co	ance Unit	
citti	\$500 ·	nt atd our te
This docum Consecut	Date: Ap	oril 07, 2010

6 SUMMARY OF RESULTS

This study was performed to investigate the potential of Solution of Glyphosate TC spiked with Glyphosine to induce gene mutations in the plate incorporation test (experiment I) and the pre-incubation test (experiment II) using the *Salmonella typhimurium* strains TA 1535, TA 1537, TA 98, and TA 100, and the *Escherichia coli* strain WP2 uvrA.

The assay was performed in two independent experiments both with and without liver microsomal activation. Each concentration, including the controls, was tested in triplicate. The test item was tested at the following concentrations:

Pre-Experiment/Experiment I and II: 3; 10; 33; 100; 333; 1000; 2500; and 5000 μg/plate

The plates incubated with the test item showed normal background growth up to 5000 µg/plate with and without metabolic activation in both independent experiments.

No toxic effects, evident as a reduction in the number of revertants (below the indication factor of 0.5), occurred in the test groups with and without metabolic activation.

No substantial increase in revertant colony numbers of any of the five tester strains was observed following treatment with Solution of Glyphosate TC spiked with Glyphosine at any dose level, neither in the presence nor absence of metabolic activation (S9 mix).

Appropriate reference mutagens were used as positive controls and showed a distinct increase of induced revertant colonies.

6.1 Conclusion

In conclusion, it can be stated that during the described mutagenicity test and under the experimental conditions reported, the test item did not induce gene mutations by base pair changes or frameshifts in the genome of the strains used.

Therefore, Solution of Glyphosate TC spiked with Glyphosine is considered to be non-mutagenic in this Salmonella typhimurium and Escherichia coli reverse mutation assay.

OBJECTIVE

7.1 Aims of the Study

The experiments were performed to assess the potential of the test item to induce gene mutations by means of two independent Salmonella typhimurium and Escherichia coli reverse mutation assays. Experiment I was performed as a plate incorporation assay. Experiment II was performed as a pre-incubation assay.

7.2 Reasons for the Study

The most widely used assays for detecting gene mutations are those using bacteria (3). They are relatively simple and rapid to perform, and give reliable data on the ability of an agent to interact with DNA and produce mutations.

Reverse mutation assays determine the frequency with which an agent reverses or suppresses the effect of the forward mutation. The genetic target presented to an agent is therefore small, specific and selective. Several bacterial strains, or a single strain with multiple markers are necessary to overcome the effects of mutagen specificity. The reversion of bacteria from growth-dependence on a particular amino acid to growth in the absence of that amino acid (reversion from auxotrophy to prototrophy) is the most widely used marker.

The Salmonella typhimurum histidine (his) and the E. coli tryptophan (trp) reversion system measures his \rightarrow his and trp \rightarrow trp reversions, respectively. The S. typhimurium and Escherichia coli strains are constructed to differentiate between base pair (TA 1535, TA 100, and WP2 uvrA) and frameshift (TA 1537, TA 98) mutations.

According to the direct plate incorporation or the pre-incubation method the bacteria are exposed to the test item with and without metabolic activation and plated on selective medium. After a suitable period of incubation, revertant colonies are counted.

To establish a dose response effect eight dose levels with adequately spaced intervals were tested. The maximum dose level was 5000 µg/plate.

To validate the test, reference mutagens were tested in parallel to the test item.

MATERIALS AND METHODS

8.1 Test Item

Internal Test Item Number: S 11113 11

The test item was prepared at Harlan Laboratories Ltd./Switzerland (Harlan Laboratories Study C88237) by spiking an aliquot of Glyphosate TC (batch 2009051501), supplied by the sponsor, with Glyphosine (batch 1438405; purity 99%), supplied by Sigma Aldrich.

The test item was prepared by weighing a defined amount of Glyphosate TC (batch 2009051501) into a suitable container. Following application of a defined amount of Glyphosine (reference item), it was dissolved in water using a defined amount of water. The resulting test item had a concentration of about 5000 mg Glyphosate/L and approximately 32 mg Glyphosine/L.

The test item was assigned the following data, according to sponsor information:

Description: An aqueous solution of Glyphosate technical grade active

> ingredient (purity 97.16 % w/w), containing 0.63% (w/w) Glyphosine in the technical grade active ingredient,

corresponding to the maximum proposed limit. Analysed under Harlan Laboratories Ltd. Study C88237 (with GLP, see Annex II)

Sponsor's Sample No.: 37/422/10

Date of preparation: March 15, 2010 at Harlan Laboratories, Ltd.

Date of Preparation + 2 weeks Expiry Date:

Storage Conditions: Room temperature, light protected

Identification of Test Item Components:

Identification: Glyphosate TC

Active Substance: Glyphosate

Batch No .: 2009051501

Purity: 95.23% w/w (cf. Manufacturer's Certificate of Analysis attached in

Annex II)

Production Date: May 15, 2009

Expiry Date: May 15, 2011 Identification: Glyphosine

Chemical Name: N,N-bis(phosphonomethyl)glycine

1438405 Batch Number:

99% w/w (cf. Manufacturer's Certificate of Analysis Purity:

attached in Annex II)

Expiry Date: February 15, 2011

The test item was used at the maximum possible dose and further dilutions were prepared

agar on the incut of S9 mix. The undis The test item precipitated in the overlay agar on the incubated agar plates at 2500 µg/plate and 5000 µg/plate in experiment II with S9 mix. The undissolved particles had no influence

8.2 Controls

8.2.1 Negative Controls

Concurrent untreated and solvent controls were performed.

8.2.2 Positive Control Substances

Without metabolic activation

Strains: Name:

Supplier:

Sudium azide, NaN₃
SERVA, D-69042 Heidelberg
30175
at least 99% Catalogue No.: Purity: deionised water Dissolved in: Concentration: 10 µg/plate

TA 1537, TA 98 Strains:

4-nitro-o-phenylene-diamine, 4-NOPD Name:

Supplier: SIGMA, D-82041 Deisenhofen

Catalogue No.: N 9504 Purity: > 99.9%

DMSO (MERCK, D-64293 Darmstadt; purity > 99 %) Dissolved in:

Concentration: 10 μg/plate in TA 98, 50 μg/plate in TA 1537

Strain:

Name: methyl methane sulfonate, MMS

Supplier: Merck-Schuchardt, D-85662 Hohenbrunn

الهار WP2 uvrA methyl ۳ M Catalogue No.: Purity: 🛇 > 99.0% Dissolved in: deionised water Concentration: 3 µL/plate

With metabolic activation

Strains: TA 1535, TA 1537, TA 98, TA 100, WP2 uvrA

Name: 2-aminoanthracene, 2-AA Supplier: SIGMA, D-82041 Deisenhofen

Catalogue No.: A 1381 Purity: 97.5%

Dissolved in: DMSO (MERCK, D-64293 Darmstadt; purity > 99%) Concentration: 2.5 µg/plate (TA 1535, TA 1537, TA 98, TA 100),

10 μg/plate (WP2 uvrA)

The stability of the positive control substances in solution is unknown but a mutagenic response in the expected range is sufficient evidence of biological stability.

8.3 Test System

8.3.1 Characterisation of the *Salmonella typhimurium* Strains and *E. coli* Strain

The histidine dependent strains are derived from *S. typhimurium* strain LT2 through a mutation in the histidine locus. Additionally due to the "deep rough" (rfa-minus) mutation they possess a faulty lipopolysaccharide envelope which enables substances to penetrate the cell wall more easily. A further mutation causes a reduction in the activity of an excision repair system. The latter alteration includes mutational processes in the nitrate reductase and biotin genes produced in a UV-sensitive area of the gene named "uvrB-minus". In the strains TA 98 and TA 100 the R-factor plasmid pKM 101 carries the ampicillin resistance marker (6).

Strain WP2 (4) and its derivatives all carry the same defect in one of the genes for tryptophan biosynthesis. Tryptophan-independent (Trp⁺) mutants (revertants) can arise either by a base change at the site of the original alteration or by a base change elsewhere in the chromosome so that the original defect is suppressed. This second possibility can occur in several different ways so that the system seems capable of detecting all types of mutagen which substitute one base for another. Additionally, the uvrA derivative is deficient in the DNA repair process (excision repair damage). Such a repair-deficient strain may be more readily mutated by agents.

When summarised the mutations of the TA strains and the *E. coli* strain, used in this study can be described as follows:

Salmonella typhimurium									
Strains	Genotype	Type of mutations indicated							
TA 1537	his C 3076; rfa⁻; uvrB⁻	frame shift mutations							
TA 98	his D 3052; rfa ⁻ ; uvrB ⁻ ; R-factor	11 11							
TA 1535	his G 46; rfa ⁻ ; uvrB ⁻	base-pair substitutions							
TA 100	his G 46; rfa-; uvrB-; R-factor	" "							
11. C11 1911 01 10	Escherichia coli								
WP2 uvrA	trp ⁻ ; uvrA ⁻	base-pair substitutions and others							

Regular checking of the properties of the strains regarding the membrane permeability and ampicillin resistance as well as spontaneous mutation rates is performed in Harlan CCR according to B. Ames et al. (1) and D. Maron and B. Ames (6). In this way it was ensured that the experimental conditions set down by Ames were fulfilled.

The bacterial strains TA 1535, TA 1537, TA 98, TA 100, and WP2 uvrA were obtained from Trinova Biochem GmbH (35394 Gießen, Germany).

8.3.2 Storage

The strain cultures were stored as stock cultures in ampoules with nutrient broth + 5 % DMSO (MERCK, D-64293 Darmstadt) in liquid nitrogen.

8.3.3 Precultures

From the thawed ampoules of the strains 0.5 mL suspension was transferred into 250 mL Erlenmeyer flasks containing 20 mL nutrient medium. A solution of 20 µL ampicillin (25 µg/mL) was added to the strains TA 98 and TA 100. This nutrient medium contains per litre:

- 8 g Nutrient Broth (MERCK, D-64293 Darmstadt)
- 5 g NaCl (MERCK, D-64293 Darmstadt)

The bacterial cultures were incubated in a shaking water bath for 4 hours at 37° C. The optical density of the bacteria was determined by absorption measurement and the obtained values indicated that the bacteria were harvested at the late exponential or early stationary phase (108-109 cells/mL).

8.3.4 Selective Agar

The plates with the selective agar were obtained from

D-64293 Darmstadt.

8.3.5 Overlay Agar

The overlay agar contains per 0.5 litre:

for Salmonella strains: 6.0 g Agar Agar*

6.0 g NaCl* 10.5 mg L-Histidin×HCl×H₂O*

12.2 mg Biotin*

for Escherichia coli:

6.0 g Agar Agar* 6.0 g NaCI*

2.5 mg Tryptophan*

* (MERCK, D-64293 Darmstadt)

Sterilisations will be performed at 121° C in an autoclave.

8.4 Mammalian Microsomal Fraction \$9 Mix

The bacteria used in this assay do not possess the enzyme systems which, in mammals, are known to convert promutagens into active DNA damaging metabolites. In order to overcome this major drawback an exogenous metabolic system is added in form of mammalian microsome enzyme activation mixture.

8.4.1 S9 (Preparation by Harlan C C R)

Phenobarbital/β-Naphthoflavone induced rat liver S9 is used as the metabolic activation system. The S9 is prepared from 8 - 12 weeks old male Wistar rats (Hsd Cpb: WU, Harlan Laboratories GmbH, 33178 Borchen, Germany), weight approx. 220 - 320 g induced by applications of 80 mg/kg b.w. Phenobarbital i.p. (Desitin; D-22335 Hamburg) and β-Naphthoflavone p.o. (Aldrich, D-89555 Steinheim) each on three consecutive days. The livers are prepared 24 hours after the last treatment. The S9 fractions are produced by dilution of the liver homogenate with a KCl solution (1+3) followed by centrifugation at 9000 g. Aliquots of the supernatant are frozen and stored in ampoules at -80°C. Small numbers of the ampoules can be kept at -20°C for up to one week. Each batch of S9 mix is routinely tested with 2-aminoanthracene as well as benzo(a)pyrene.

The protein concentration in the S9 preparation was 34.3 mg/mL (lot no. R 220110) in both experiments.

8.4.2 S9 Mix

Before the experiment an appropriate quantity of S9 supernatant was thawed and mixed with S9 co-factor solution. The amount of S9 supernatant was 10% v/v in the S9 mix. Cofactors are added to the S9 mix to reach the following concentrations in the S9 mix:

8 mM MgCl₂
33 mM KCl
5 mM Glucose-6-phosphate
4 mM NADP

in 100 mM sodium-ortho-phosphate-buffer, pH 7.4.

During the experiment the S9 mix was stored in an ice bath. The S9 mix preparation was performed according to Ames et al.(1).

8.5 Pre-Experiment for Toxicity

To evaluate the toxicity of the test item a pre-experiment was performed with strains TA 1535, TA 1537, TA 98, TA 100, and WP2 uvrA. Eight concentrations were tested for toxicity and mutation induction with three plates each. The experimental conditions in this pre-experiment were the same as described below for the experiment (plate incorporation test).

Toxicity of the test item results in a reduction in the number of spontaneous revertants or a clearing of the bacterial background lawn.

The pre-experiment is reported as main experiment I, if the following criteria are met:

Evaluable plates (>0 colonies) at five concentrations or more in all strains used.

8.6 Dose Selection

Since the second experiment was performed before the results of experiment I were available both experiments were performed with the following concentrations:

3; 10; 33; 100; 333; 1000; 2500; and 5000 μg/plate

8.7 Experimental Performance

For each strain and dose level including the controls, three plates were used.

The following materials were mixed in a test tube and poured onto the selective agar plates:

1000 μL Test solution at each dose level (solvent or reference mutagen solution (positive control)),

500 µL S9 mix (for test with metabolic activation) or S9 mix substitution buffer (for test without metabolic activation).

100 μL Bacteria suspension (cf. test system, pre-culture of the strains),

1000 μι Overlay agar

In the pre-incubation assay 1000 μ L test solution (solvent or reference mutagen solution (positive control)), 500 μ L S9 mix / S9 mix substitution buffer and 100 μ L bacterial suspension were mixed in a test tube and shaken at 37°C for 60 minutes. After pre-incubation 1.0 mL overlay agar (45°C) was added to each tube. The mixture was poured on selective agar plates.

After solidification the plates were incubated upside down for at least 48 hours at 37 °C in the dark (2).

8.8 Data Recording

The colonies were counted using the Petri Viewer Mk2 (Perceptive Instruments Ltd, Suffolk CB9 7BN, UK) with the software program Ames Study Manager. The counter was connected to an IBM AT compatible PC with printer to print out the individual values and the means from the plates for each concentration together with standard deviations and enhancement factors as compared to the spontaneous reversion rates (see tables of results). Due to precipitation of the test item and air bubbles the revertant colonies were partly counted manually.

8.9 Acceptability of the Assay

The Salmonella typhimurium and Escherichia coli reverse mutation assay is considered acceptable if it meets the following criteria:

- regular background growth in the negative and solvent control
- the spontaneous reversion rates in the negative and solvent control are in the range of our historical data
- the positive control substances should produce a significant increase in mutant colony frequencies

8.10 Evaluation of Results

A test item is considered as a mutagen if a biologically relevant increase in the number of revertants exceeding the threshold of twice (strains TA 98, TA 100, and WP2 uvrA) or thrice (strains TA 1535 and TA 1537) the colony count of the corresponding solvent control is observed (3).

A dose dependent increase is considered biologically relevant if the threshold is exceeded at more than one concentration (2).

An increase exceeding the threshold at only one concentration is judged as biologically relevant if reproduced in an independent second experiment.

A dose dependent increase in the number of revertant colonies below the threshold is regarded as an indication of a mutagenic potential if reproduced in an independent second experiment. However, whenever the colony counts remain within the historical range of negative and solvent controls such an increase is not considered biologically relevant.

8.11 Biometry

According to the OECD guideline 471, a statistical analysis of the data is not mandatory.

9 DISCUSSION OF RESULTS

The test item Solution of Glyphosate TC spiked with Glyphosine was assessed for its potential to induce gene mutations in the plate incorporation test (experiment I) and the pre-incubation test (experiment II) using *Salmonella typhimurium* strains TA 1535, TA 1537, TA 98, and TA 100, and the *Escherichia coli* strain WP2 uvrA.

The assay was performed in two independent experiments both with and without liver microsomal activation. Each concentration and the controls were tested in triplicate. The test item was tested at the following concentrations:

Pre-Experiment/Experiment I and II: 3; 10; 33; 100; 333; 1000; 2500; and 5000 μg/plate

The plates incubated with the test item showed normal background growth up to 5000 µg/plate with and without S9 mix in both experiments.

No toxic effects, evident as a reduction in the number of revertants (below the indication factor of 0.5), occurred in the test groups with and without metabolic activation.

No substantial increase in revertant colony numbers of any of the five tester strains was observed following treatment with Solution of Glyphosate TC spiked with Glyphosine at any dose level, neither in the presence nor absence of metabolic activation (S9 mix).

Appropriate reference mutagens were used as positive controls. They showed a distinct increase of induced revertant colonies.

In conclusion, if can be stated that during the described mutagenicity test and under the experimental conditions reported, the test item did not induce gene mutations by base pair changes or frameshifts in the genome of the strains used.

10 REFERENCES

- Ames, B.N., J. McCann, and E. Yamasaki (1977)
 Methods for detecting carcinogens and mutagens with the Salmonella/mammalian
 microsome mutagenicity test
 In: B.J. Kilbey et al. (Eds.)"Handbook of Mutagenicity Test Procedures" Elsevier,
 Amsterdam, 1-17
- de Serres F.J. and M.D. Shelby (1979)
 Recommendations on data production and analysis using the Salmonella/microsome mutagenicity assay
 Mutation Res. 64, 159-165
- Hollstein, M., J. McCann, F.A. Angelosanto and W.W. Nichols (1979) Short-term tests for carcinogens and mutagens Mutation Res. 65, 133-226
- Green, M.H.L. and W.J. Muriel (1976)
 Mutagen Testing Using TRP⁺ Reversion in Escherichia Coli Mutation. Res. 38, 3- 32
- Maron D.M., J. Katzenellenbogen and B.N. Ames (1981)
 Compatibility of organic solvents with the Salmonella/Microsome Test Mutation Res. 88, 343-350
- Maron D.M., Ames, B.N. (1983)
 Revised methods for the Salmonella mutagenicity test Mutation Res. 113, 173-215

11 DISTRIBUTION OF THE REPORT

Sponsor $3 \times (2 \times \text{copy}, 1 \times \text{electronic copy (pdf-file)})$ Study Director $1 \times (\text{original})$ Solution of Glyphosate TC spiked with Glyphosine

Page 21 of 35

12 SUMMARY OF RESULTS

12.1 Summary of Results Pre-Experiment and Experiment I

Study Name: 1332300 Experiment: 1332300 VV Plate

Assay Conditions:

Study Code: Harlan CCR 1332300

Date Plated: 17/03/2010 Date Counted: 22/03/2010

Metabolic Dose Activation Group Level

(per

Revertant Colony Counts (Mean ±SD)

		plate)		in allo	3 16 1010	ζ.	
			TA 4505	0,000	10, 00,	-4/100	14/20 4
			TA 1535	<u>TA 1537</u>	<u>TA 98</u>	<u>TA 100</u>	WP2 uvrA
				31, 01 A	CO. ON. 140		
Without	Deionised water		16 ± 3	10 ± 3	33 ± 5	132 ± 9	61 ± 8
Activation	Untreated		14 ± 2	14 ± 1		135 ± 8	58 ± 8
	Solution of	3 µg	14 ± 4	10 ± 3	34 ± 5	131 ± 6	57 ± 10
	Glyphosate TC	10 μg	14 ± 5	9(±3,5)	31 ± 3	144 ± 17	65 ± 4
	spiked with	33 µg	15 ± 2	8 ± 1	33 ± 5	149 ± 6	59 ± 7
	Glyphosine	100 µg	17±5	92±1	35 ± 2	146 ± 17	69 ± 10
		333 µg	11°±3°	11 ± 4	31 ± 3	131 ± 20	59 ± 9
		1000 µg	13 ± 4	13 ± 1	32 ± 9	140 ± 8	68 ± 1
	7 %	2500 µg	15 ± 1	8 ± 1 9 ± 4	34 ± 6	129 ± 14	47 ± 7 35 ± 7
	NaN3	5000 μg 10 μg	1026 ± 45	914	26 ± 2	98 ± 16 1886 ± 60	30 ± /
	4-NOPD	10 µg	1920.±40		369 ± 20	1000 ± 00	
	4-NOPD	50 ug	10/0	105 ± 15	309 I 20		
	MMS	3.0 uL	e, S	100 1 10			1057 ± 57
	10 4 to 110	10 µg 10 µg 50 µg 3.0 µL 3 µg 10 µg	15 ± 1 12 ± 0 1926 ± 45				
With	Deionised water	10, 115, 10	17 ± 2	20 ± 6	44 ± 4	154 ± 14	72 ± 8
Activation	Untreated	, 0, Ke,	21 ± 1	15 ± 2	41 ± 5	153 ± 7	70 ± 12
	Solution of	3 µg	21 ± 5	20 ± 4	47 ± 3	164 ± 10	70 ± 11
0,70	Solution of Glyphosate TC spiked with	10 µg	15 ± 3	17 ± 3	39 ± 7	158 ± 9	72 ± 9
Con City	spiked with	`33 µg	16 ± 5	21 ± 2	45 ± 5	165 ± 8	70 ± 3
OB. It I sill	Glyphosine	100 µg	19 ± 5	17 ± 2	43 ± 2	162 ± 9	75 ± 5
olo, les illes	Glyphosine	333 µg	17 ± 2	20 ± 1	43 ± 7	166 ± 4	76 ± 5
10 / C/11	O' CO	1000 µg	14 ± 1	14 ± 5	41 ± 7	169 ± 5	65 ± 4
"ill, 100 , 167.	90	2500 µg	14 ± 1	11 ± 2	50 ± 1	155 ± 5	65 ± 8
horse and	2/1/2	5000 µg	15 ± 4	11 ± 3	40 ± 6	92 ± 18	43 ± 15
15 11	2-AA	2.5 µg	342 ± 8	437 ± 7	2072 ± 40	3249 ± 170	250 ± 12
and the state of t	Z-AA	10.0 µg					350 ± 13
ing ane.							
Key to Positi NaN3 so 2-AA 2- 4-NOPD 4	ve Controls						
is con-							
NaN3 se	odium azide						
2-AA 2-	-aminoanthracene						
	o pinonyione						
MMS m	ethyl methane sulf	ronate					

12.2 Summary of Results Experiment II

Study Code: Harlan CCR 1332300 Study Name: 1332300 Experiment: 1332300 HV2 Pre Date Plated: 18/03/2010 Date Counted: 22/03/2010

Experiment: Assay Cond	1332300 HV2 Pre litions:				Date Plated: 1 Date Counted	8/03/2010 : 22/03/2010	S
Metabolic Activation	Test <u>Group</u>	Dose Level (per plate)	Revertant C	olony Counts	(Mean ±SD)	atiles.	ind lise
			<u>TA 1535</u>	TA 1537	TA 98	<u>TA 100</u>	WP2 uvrA
Without Activation	Deionised water Untreated Solution of Glyphosate TC spiked with Glyphosine NaN3 4-NOPD 4-NOPD MMS	3 µg 10 µg 33 µg 100 µg 333 µg 1000 µg 2500 µg 5000 µg 10 µg 10 µg 50 µg 3 0 µL	17 ± 3 16 ± 4 17 ± 3 18 ± 3 18 ± 3 18 ± 3 15 ± 2 12 ± 4 12 ± 2 1688 ± 150	15 ± 2 10 ± 5	34 ± 4 30 ± 9 35 ± 9 34 ± 4 36 ± 12 35 ± 4 29 ± 1 32 ± 3 29 ± 4 20 ± 6 453 ± 10	167 ± 14 155 ± 9 161 ± 10 155 ± 17 168 ± 19 150 ± 2 170 ± 11 157 ± 12 138 ± 11 129 ± 9 1985 ± 99	58 ± 3 54 ± 7 53 ± 3 55 ± 1 59 ± 12 55 ± 2 59 ± 8 56 ± 9 52 ± 7 34 ± 3
With Activation	Deionised water Untreated Solution of Glyphosate TC spiked with Glyphosine 2-AA	3 µg 10 µg 33 µg 100 µg 333 µg 1000 µa	21 ± 1 21 ± 3 20 ± 4 18 ± 4 20 ± 4 23 ± 3 18 ± 3 23 ± 2 24 ± 1 P 22 ± 2 P 431 ± 16	18 ± 5 16 ± 1 18 ± 2 19 ± 4 21 ± 2 20 ± 1 18 ± 5 U M 18 ± 4 U M 12 ± 2 U M P 11 ± 1 U M P 547 ± 31	47 ± 3 46 ± 4 44 ± 7 45 ± 8 44 ± 3 45 ± 4 43 ± 10 49 ± 6 45 ± 6 50 ± 1 2686 ± 742	166 ± 9 169 ± 12 171 ± 22 157 ± 12 168 ± 15 175 ± 9 171 ± 17 165 ± 2 149 ± 12 P 100 ± 12 S 3992 ± 38	67 ± 8 67 ± 8 66 ± 3 73 ± 12 69 ± 9 66 ± 12 63 ± 13 64 ± 6 59 ± 7 PU 62 ± 5
J. K. Olle	2-AA	10.0 µg					378 ± 42

Key to Positive Controls

Key to Plate Postfix Codes

sodium azide 2-AA 2-aminoanthracene 4-NOPD 4-nitro-o-phenylene-diamine MMS methyl methane sulfonate

Precipitate U Air bubbles М Manual count

Ρ

These data represent the laboratory's historical control data from January 2009 until December 2009 representing approx. 550 experiments (WP2 uvrA the historical data are based on approx. 300 experiments).

Strain			with	out S9 mix	Ġ	0000	with S9 m	ix	
		Mean	SD	Min	Max	Mean	SD	Min	Max
	Solvent control	16	3.37	8	38	imet 19	4.37	10	41
TA 1535	Untreated control	15	3.41	OF PULL	36	18	4.69	8	55
	Positive control	1886	242.09	663	2690	304	154.47	134	2404
	Solvent control	12	2.84	10 7 9, W. 6.	N 28	15	3.59	7	33
TA1537	Untreated control	12	3.23	26 14 28 19	(C) 23	16	3.92	7	31
	Positive control	101	28.30	11215/1158155	440	227	67.24	68	498
	Solvent control	30	5,26	110 Pe15010	52	38	6.58	16	59
TA 98	Untreated control	31	5.67	itilian 14	59	39	6.91	16	84
	Positive control	407	98.13	216	897	1586	454.52	198	3309
	Solvent control	132	23.21	94	218	144	25.42	94	241
TA 100	Untreated control	142	21.88	85	226	154	25.80	94	239
,0	Positive control	1954	426.94	563	2844	2032	569.62	594	3724
	Solvent control	52	8.11	33	76	61	8.66	34	82
WP2uvrA	Untreated control	53	8.10	34	80	62	8.80	32	87
Wey liftle	Positive control	808	434.27	168	2528	332	154.50	175	1718

Mean = mean value of revertants/plate

SD = standard deviation

Min = minimal value/Max = maximal value

Study Name: 1332300 Experiment: 1332300 VV Plate Assay Conditions:

Study Code: Harlan CCR 1332300 Date Plated: 17/03/2010 Date Counted: 22/03/2010

Without metabolic activation

							45	
_	Strain	Compound	Dose level per plate	Mean revertants	Standard Deviation	Ratio treated /	Individual revertant colony counts	, use
_				per plate		solvent	- 20 ^{CC} 11 ^{CC}	-CO
_				440			10,00 10,000	0.
	TA 1535	Solution of	3 µg	14.3	3.8	0.9	10, 16, 17	
		Glyphosate TC	10 μg	14.0	5.0	0.9	19, 9, 14	
		spiked with	33 µg	15.3	2.1	1.0	16, 17, 13	
		Glyphosine	100 μg	17.3	4.5		17, 22, 13	
			333 µg	11.0	2.6	0.7	9, 10, 14	
			1000 µg	12.7	3.5	0.8 1.0	13, 9, 16	
			2500 μg	15.3	1.2	~~()		
			5000 µg	12.0	0.0	0.8	12, 12, 12	
		Deionised water		15.7	3.1	010670	15, 13, 19	
_		Untreated Control		14.0	2.0	(3) (3), "	16, 12, 14	
_				16) 60, 90	100 0j	Wiles .	
	TA 1537	Solution of	3 µg	10.3	2.5	2, 19	8, 13, 10	
		Glyphosate TC	10 µg	9.0	3.0	0.9	12, 6, 9	
		spiked with	33 µg 🦼	9.0	2.5 3.0 0.6 1.2 4.2	0.9	8, 9, 8	
		Glyphosine	100 µg	8.7	1.2 4.2	0.9	8, 8, 10	
			333 µg	11.3	4.2	0.9 0.9 1.2	8, 16, 10	
			1000 µg	13.3 8.3	0.6 0.6	1.4	13, 13, 14	
			2500 µg	8.3	0.60	0.9	9, 8, 8	
		20	5000 µg	9.3	4.0 3.1	1.0	14, 7, 7	
		Deionised water	· Kr. 28.	9.3 9.7	3.1		9, 7, 13	
_		Untreated Control	112 113 91	14.0	1.0		14, 15, 13	
_		197,199	30,00	Vice 6				
	TA 98	Solution of	3 µg	34.3	4.6	1.0	37, 37, 29	
		Glyphosate TC	о µу 10 µg 33 µg	30.7	2.9	0.9	29, 29, 34	
		spiked with Glyphosine	33 µg	32.7	4.7	1.0	38, 29, 31	
		Glyphosine	100 μg	34.7	2.1	1.0	37, 34, 33	
	, 0	70.6, 415, 11	333 µg	31.0	2.6	0.9	34, 29, 30	
	N. 19%	18, 40, 4, 700,	1000 µg	32.0	8.5	1.0	23, 40, 33	
	15. JE	Deionised water	2500 µg	34.3	6.1	1.0	29, 41, 33	
	010, We, 's	He Co. His Me	5000 µg	26.0	2.0	0.8	24, 28, 26	
.~	16 L'M, EM	Deionised water		33.3	4.6		28, 36, 36	
	, 700	Untreated Control		35.7	7.4		44, 33, 30	
This document is not the	le sus	E HIVIS						
	ild.	0,						
100	ell							
-C)	COL							
700								
101								

Study Name: 1332300 Experiment: 1332300 VV Plate

Assay Conditions:

Study Code: Harlan CCR 1332300 Date Plated: 17/03/2010

Date Counted: 22/03/2010

Without metabolic activation

							<i>N</i> .
•	Strain	Compound	Dose level	Mean	Standard	Ratio	Individual revertant
			per plate	revertants	Deviation	treated /	colony counts
				per plate		solvent	201:63·
	TA 100	Solution of	3 µg	131.3	6.0	1.0	132, 125, 137
	17 100	Glyphosate TC	3 μg 10 μg	144.3	17.2	1.1	129, 141, 163
		spiked with	33 µg	148.7	6.0	1.1	155, 143, 148
		Glyphosine	100 µg	145.7	17.2	1.1	143, 164, 130
			333 µg	131.0	19.9	1.0	142, 143, 108
			1000 µg	140.3	7.6	(9.1:0)	149, 137, 135
			2500 µg	128.7	13.6 🤄	1.0	116, 143, 127
			5000 μg	98.3	16.0	-00.7	115, 97, 83
		Deionised water		132.3	8.5	3 760	142, 129, 126
		Untreated Control		135.3	8.1	0/070	128, 134, 144
•					11. 13.	(0) (0) /	2, 2,
•	WP2 uvrA	Solution of	3 µg	57.0	(10.4)	0.9	51, 69, 51
		Glyphosate TC	10 μg	65.0	3.6	(D)	69, 64, 62
		spiked with	33 µg	59.3	3.6 7.2	Single	64, 51, 63
		Glyphosine	100 µg ≤	69.0			65, 80, 62
			333 µg 🛇	59.0	8.7	1.0	49, 63, 65
			1000 µg	68.3	1.2	1.1	69, 69, 67
			2500 µg	68.3 47.0	7.0 7.0 7.0	0.8	54, 47, 40
		>	5000 μg	34.7	7.0	0.6	34, 28, 42
		Deionised water	, 570, KS.	61.0	7.9		58, 70, 55
		Untreated Control	5 27	58.3	8.1		49, 64, 62
		10:01	11.00	18/1 3/0			
	TA 1535	NaN3	10 µg	1926.0	44.9	122.9	1976, 1913, 1889
	TA 1537	4-NOPD	50 µg	104.7	15.4	10.8	112, 87, 115
	TA 98	4-NOPD 4-NOPD	10 µg	369.3	19.7	11.1	347, 377, 384
	TA 100	Mairo	10 μg	1886.3	59.5	14.3	1935, 1904, 1820
	WP2 uvrA		3.0 µL	1057.0	56.8	17.3	1117, 1050, 1004
:	*10	37 No OL CIT	V.0.				
	Key to Positive	Controls	7.				
•	NaN3 soc	dium azide					
	4-NOPD 4-n	nitro-o-phenylene-diamine	€				
18	Me Me	thyl methane sulfonate					
200	e and	, wis					
	0.	40					
1,0	<i>H</i> .	0					
SUL IS	V						
Ails 1	IJERT						
	edheur						
	seduent						
COL	seduent						
Cou	seduent						
Cou	seduent						
Col	seduent						
inentis roth	sedient						

Study Name: 1332300 Experiment: 1332300 VV Plate Assay Conditions:

Study Code: Harlan CCR 1332300 Date Plated: 17/03/2010

Date Counted: 22/03/2010

With metabolic activation

_							
	Strain	Compound	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts
_				' '			, 0° ; 6° , 0°
	TA 1535	Solution of	3 µg	20.7	4.9	1.2	23, 15, 24
		Glyphosate TC	10 μg	15.3	2.9	0.9	12, 17, 17
		spiked with	33 µg	16.3	4.5	1.0	16, 12, 21
		Glyphosine	100 µg	19.3	4.7	1.1,0	23, 21, 14
			333 µg	17.0	1.7		16, 16, 19
			1000 µg	14.3	0.6	0.8	14, 15, 14
			2500 µg	13.7	0.6	0.8	14, 13, 14 14, 14, 13 19, 14, 12
			5000 µg	15.0	3.6	0.9	19, 14, 12
		Deionised water		17.0	2.0	3 000	15, 17, 19
		Untreated Control		20.7	1.2	d protes	22, 20, 20
<u> </u>					11. 93 .	(0 0)	Co.
	TA 1537	Solution of	3 µg	19.7	4.0	1.0	24, 19, 16
		Glyphosate TC	10 μg	16.7	2.9	0.8	20, 15, 15
		spiked with	33 µg	20.7	7.5	.691.00°	19, 22, 21
		Glyphosine	100 µg	17.3	0 1.5	0.9	17, 16, 19
			333 µg 🛇	19.7	4.0 2.9 1.5 1.5 1.2 4.5 2.3 2.6 5.6	1.0	19, 21, 19
			1000 µg	14,3	4.5	0.7	19, 10, 14
			2500 µg	11.3	2.3	0.6	14, 10, 10
			5000 μg	11.0	2.6	0.6	10, 14, 9
		Deionised water	0 70, 60	20.0	5.6		26, 15, 19
		Untreated Control	. Kg 23.	15.3	1.2 4.5 2.3 2.6 5.6 2.1		16, 13, 17
<u> </u>		6: 70	1, 11, 9,	100			
	TA 98	Solution of	3 µg	46.7	3.2	1.1	49, 43, 48
		Glyphosate TC	10 µg	39.3	6.8	0.9	47, 34, 37
		Glyphosate TC spiked with Glyphosine	33 µg	44.7	4.6	1.0	50, 42, 42
		Glyphosine	100 µg	43.0	1.7	1.0	41, 44, 44
	>,	Sing Will soll	333 µg	43.3	6.5	1.0	50, 43, 37
	, 0	7 6. 415 11	1000 µg	41.3	6.7	0.9	38, 37, 49
	2 6/2	10,00,00	2500 µg	49.7	1.2	1.1	51, 49, 49
	Do di	er dio es	5000 µg	40.0	6.1	0.9	47, 37, 36
	010 40 14	Deionised water		44.0	3.6		43, 48, 41
200	5,00,00	Untreated Control		41.3	5.1		47, 37, 40
This document is not its	Kng 065	by "His or					
115	.14.	0/1					
ene	elji,						
INTE	Wille.						
2000	200						
:60-							
YW. Co							

Study Name: 1332300 Experiment: 1332300 VV Plate

Assay Conditions:

Study Code: Harlan CCR 1332300 Date Plated: 17/03/2010

Date Counted: 22/03/2010

With metabolic activation

	Strain	Compound	Dose level per plate	Mean revertants	Standard Deviation	Ratio treated /	Individual revertant colony counts
				per plate		solvent	Cillie.
		• • • •					
	TA 100	Solution of	3 μg	164.3	10.1	1.1	175, 163, 155
		Glyphosate TC	10 μg	158.3	8.7	1.0	151, 156, 168 158, 163, 173
		spiked with Glyphosine	33 μg	164.7 161.7	7.6 9.3	1.1	166, 151, 168
		Glyphosine	100 µg 333 µg	166.3	9.5 3.5	1.0	166, 170, 163
			333 μg 1000 μg	169.0	4.6	(9.1.0)	173, 164, 170
			2500 μg	155.3	5.1	OUTUIL	151, 154, 161
			5000 µg	92.0	18.3	-00.6	112, 88, 76
		Deionised water	σσσσ μη	154.3	13.7	700,480	170, 148, 145
		Untreated Control		153.3	7.4	of office of	159, 145, 156
					10.19	(O V)	10 0.
1	WP2 uvrA	Solution of	3 µg	70.0	91.4	1.0	62, 65, 83
		Glyphosate TC	10 μg	72.3	() (() () () () ()		67, 67, 83
		spiked with	33 µg	ah - a	· · · · · · · · · · · · · · · · · · ·	0 00 0 0	70, 67, 72
		Glyphosine	100 μg	75.0	5.2	120	78, 69, 78
		3 1	333 µg	76.0	5.2 5.3 4.0	01.1	80, 78, 70
			1000 µg	65.3	4.0	0.9	69, 66, 61
			2500 µg	65.0	7.5	0.9	66, 72, 57
			5000 μg	42.7	14.6	0.6	31, 59, 38
		Deionised water	5, 570, 160	72.3	8.0		73, 64, 80
		Untreated Control	· 6 2.	70.3	11.6		57, 76, 78
		0;0	1, 74, 91	10/10/10			
	TA 1535	2-AA 2-AA 2-AA	2.5 µg	341.7	8.1	20.1	333, 343, 349
	TA 1537	2-AA (10 6)	2.5 µg	436.7	7.4	21.8	445, 431, 434
	TA 98	2-AA	2.5 μg 2.5 μg	2072.0	40.3	47.1	2101, 2089, 2026
	TA 100	2-AA 510 5 601	2.5 µg	3249.3	170.4	21.1	3062, 3291, 3395
,	WP2 uvrA	2-AA 2-AA 2-AA 2-AA 2-AA	€ 10.0 µg	350.0	13.0	4.8	343, 365, 342
	v to Positive (2-AA 2-AA Controls minioanthracene	4,0,				
- 7	ΛΛ - 3 or	winoanthracens					
2-1	-VO 2-al	minualitillacette					
"Ve	COII. KO.	1)DI. 01 10CD					
1,0	300	3.00					
is the	Sil.	c flyla					
Jille J.	:14.	0,					
3,	.enlin						
~O'	7						
200							
C'0/,							

Study Name: 1332300 Experiment: 1332300 HV2 Pre Assay Conditions:

Study Code: Harlan CCR 1332300 Date Plated: 18/03/2010

Date Counted: 22/03/2010

Without metabolic activation

_							
	Strain	Compound	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts
_							, 0° ; 6° , 0°
	TA 1535	Solution of	3 µg	16.7	3.1	1.0	14, 16, 20
		Glyphosate TC	10 μg	17.7	2.9	1.0	16, 16, 21
		spiked with	33 µg	17.7	3.2	1.0	14, 19, 20
		Glyphosine	100 µg	18.3	2.9	1.1	15, 20, 20
			333 µg	18.0	3.5		16, 22, 16
			1000 µg	15.3	1.5	0.9	14, 17, 15
			2500 µg	12.0	4.4	0.7	14, 17, 15 10, 9, 17 13, 12, 10
			5000 µg	11.7	1.5	0.7	13, 12, 10
		Deionised water		17.3	2.5	3 000	20, 17, 15
		Untreated Control		16.3	3.5	6/04	13, 20, 16
<u> </u>					11. 11.	(0, 0)	Co.
	TA 1537	Solution of	3 µg	13.7	02.1	201.10	13, 16, 12
		Glyphosate TC	10 μg	14.3	3.8	1.2	16, 17, 10
		spiked with	33 µg	12.0	2.6	.691.00°	14, 9, 13
		Glyphosine	100 µg	11.0	2.6	0.9	14, 9, 10
			333 µg 🛇	11.7	2.5	1.0	12, 9, 14
			1000 μg	13.7	2.1 3.8 2.6 2.6 2.5 1.5 2.0 5.2 2.6	0.9 1.0 1.1 1.3	12, 15, 14
			2500 µg	13.7 15.0	2.0	1.3	17, 15, 13
			5000 μg	10.0	5.2	0.8	7, 7, 16
		Deionised water	S. 70, 60	12.0	2.6		14, 9, 13
		Untreated Control	, Kg 23.	11/3	3.2		10, 15, 9
<u> </u>		6: 70	1, 11, 91	, 18/1, 1/0			
	TA 98	Solution of	3 µg	34.7	8.6	1.0	33, 27, 44
		Glyphosate TC	10 µg	34.3	3.8	1.0	36, 37, 30
		Glyphosate TC spiked with	33 µg	35.7	11.6	1.1	28, 30, 49
		Glyphosine	100 µg	34.7	4.0	1.0	30, 37, 37
	>,	Ches this tip	333 µg	28.7	0.6	0.9	29, 28, 29
	,0	7 6. 412 M	1000 µg	31.7	3.1	0.9	29, 31, 35
	D. 16%	10,40, -0, 700	2500 µg	28.7	4.0	0.9	31, 31, 24
	OP all	religionies rel	5000 µg	20.3	5.8	0.6	17, 17, 27
	O10 110 11	Deionised water		33.7	3.5		30, 37, 34
200	S COLL CO.	Untreated Control		30.0	8.7		35, 35, 20
This document is not its	King Obs	Pillis					00,00,20
1,19	4.	O, C					
OCK 1	ellin,						
-UIII	dile						
3000	200						
·60 ~010°							
I'M's							

Study Name: 1332300 Experiment: 1332300 HV2 Pre

Assay Conditions:

Study Code: Harlan CCR 1332300 Date Plated: 18/03/2010

Date Counted: 22/03/2010

Without metabolic activation

	Strain	Compound	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts
	-			pei piate		SOIVEIIL	- 107, 162. VO 7.
	TA 100	Solution of	3 µg	160.7	9.5	1.0	151, 161, 170
		Glyphosate TC	10 μg	155.0	17.1	0.9	157, 137, 171
		spiked with	33 µg	168.0	19.1	1.0	170, 148, 186
		Glyphosine	100 µg	150.3	1.5	0.9	149, 150, 152
			333 µg	170.0	11.3	1.0	177, 176, 157
			1000 µg	157.0	12.2	. ~ / / . / /) _O/ _/
			2500 µg	137.7	10.7	0.8	163, 165, 143 140, 147, 126 138, 121, 128
			5000 µg	129.0	8.5	0.8	138, 121, 128
		Deionised water		167.0	14.4	d die	151, 171, 179
		Untreated Control		155.3	9.3	6107	166, 151, 149
					117 117 1	(0) 01	The Co.
	WP2 uvrA	Solution of	3 µg	53.0	3.5	0.9	55, 55, 49
		Glyphosate TC	10 μg	55.3	0 12	0.9	56, 56, 54
		spiked with	33 µg	59.3	7 07 07	2 cs 000	61, 47, 70
		Glyphosine	100 μg s	55.3	11.6 1.5 7.5 8.7	0.9	55, 54, 57
			333 µg 🛇	59.3	7.5	1.0	52, 67, 59
			1000 μg	56.0	8.7	10	51, 66, 51
			2500 µg	52.0	7.0	0.9	59, 45, 52
		>	5000 μg		3.1	0.6	31, 37, 33
		Deionised water	2 270, 60	58.3	3.2		62, 57, 56
		Untreated Control	5 27	54.0	7.2		62, 48, 52
		70, 70	1, 11, 91	10/1/0			
	TA 1535	NaN3	2 10 µg	1688.3	149.5	97.4	1728, 1814, 1523
	TA 1537	4-NOPD	50 μg	123.3	11.4	10.3	120, 114, 136
	TA 98	4-NOPD	10 µg	452.7	10.2	13.4	441, 460, 457
	TA 100	NaN3	10 µg	1985.3	98.5	11.9	2099, 1925, 1932
	WP2 uvrA		⊘ 3.0 µL	691.3	67.3	11.9	748, 709, 617
	Key to Positive NaN3 soc 4-NOPD 4-n MMS me	Controls	·U.o.				
	NaN3 soc	dium azide					
	4-NOPD 4-n	itro-o-phenylene-diamin	е				
	MIMS me	thyl methane sulfonate					
,0)	. O. M	, is					
.6	160	E. F.					
all.	illy,	0.					
ine.	(S)						
C),	000						
50-	50						
Co	•						
<u> </u>							

Study Name: 1332300 Experiment: 1332300 HV2 Pre Assay Conditions: Study Code: Harlan CCR 1332300 Date Plated: 18/03/2010 Date Counted: 22/03/2010

With metabolic activation

Strain	Compound	Dose level	Mean	Standard	Ratio treated /	Individual revertant
		per plate	revertants per plate	Deviation	solvent	colony counts
			per plate		SOIVEIIL	207.162. 20 A
TA 1535	Solution of	3 µg	19.7	3.5	0.9	20, 23, 16
17 1000	Glyphosate TC	3 μg 10 μg	18.3	4.2	0.9	17, 15, 23
	spiked with	33 μg	20.0	3.6	0.9	21, 23, 16
	Glyphosine	33 μg 100 μg	22.7	3.1	1.1	26, 22, 20
	Gryphicomic	333 µg	18.0	2.6	0.8	21, 17, 16
		1000 μg	22.7	1.5	1011.01	24, 21, 23
		2500 µg	23.7	0.6	0011	24 P, 24 P, 23 P
		2000 μg 5000 μg	22.3	2.1	120	23 P, 24 P, 20 P
	Deionised water	оооо ду	21.3	0.6	La Year	21, 21, 22
	Untreated Control		21.0	2.6	2, 40, 6	20, 24, 19
	Onti cate a Gonti of		27.0	10 20	10 / OC 1	20, 21, 10
TA 1537	Solution of	3 µg	17.7×	2.1	1.00	17, 16, 20
	Glyphosate TC	10 μg	19.3	4.0	0	17, 17, 24
	spiked with	33 µg	21.3	2.1	3.69.20	19, 22, 23
	Glyphosine	100 µg	20.3	4010	122	20, 20, 21
	Gryphicomic	333 µg	17.7	47.0	1.0	23 U M, 14 U M, 16 U M
		1000 µg	18.3	4.0	1.0	23 U M, 16 U M, 16 U M
		2500 µg	12.3	21.0	0.7	13 U M P, 14 U M P, 10 U M P
		5000 μg	11.0	0112	0.6	11 U M P, 12 U M P, 10 U M P
	Deionised water	3000 да	17.7	×4 7	0.0	23, 16, 14
	Untreated Control	650 24	15:7	0.6		15, 16, 16
	Unit cated Contagn	12 10 11	0 12:30	0.0		10, 10, 10
TA 98	Solution of	3 µg	43.7	6.5	0.9	37, 44, 50
	Glyphosate TC	10 µg	44.7	8.4	0.9	49, 50, 35
Schul english	spiked with	33 µg	44.3	3.1	0.9	47, 45, 41
	C1 (O) O x	100 µg	45.3	3.8	1.0	48, 41, 47
	Chi, Ellis 89 13	333 µg	43.0	10.1	0.9	41, 54, 34
, o'l	Glypnosine		48.7	6.4	1.0	56, 45, 45
Ky.	Doing to the state of the state	2500 µg	45.3	6.4	1.0	50 P, 48 P, 38 P
0, × /	, ell, "10, 00 el	5000 µg	50.0	1.0	1.1	51 P, 49 P, 50 P
~~ ~~						
old Singly of	Deionised water		47.3	2.5		50, 45, 47

Key to Plate Postfix Codes

P Precipitate
U Air bubbles
M Manual count

s4c2dr.doc

Study Name: 1332300 Experiment: 1332300 HV2 Pre

Assay Conditions:

Study Code: Harlan CCR 1332300 Date Plated: 18/03/2010

Date Counted: 22/03/2010

With metabolic activation

•	Strain	Compound	Dose level	Mean	Standard	Ratio	Individual revertant	
		·	per plate	revertants	Deviation	treated /	colony counts	
				per plate		solvent	111. 8. 173	
	TA 100	Solution of	3 µg	170.7	21.6	1.0	191, 148, 173	
		Glyphosate TC	10 μg	157.3	12.0	0.9	158, 145, 169	
		spiked with	33 µg	168.0	15.1	1.0	156, 185, 163	
		Glyphosine	100 µg	175.3	9.0	1.1	184, 176, 166	
		Gryphosine					74	
			333 µg	171.0	16.8	1.0	177, 184, 152	
			1000 µg	165.0	1.7	(1.0,0)	166, 166, 163	
			2500 µg	148.7	11.7	0.9	162 P, 144 P, 140 P	
			5000 µg	100.3	12.0	0.6	112 P, 101 P, 88 P	
		Deionised water		166.3	9.1	9.00	158, 165, 176	
		Untreated Control		169.3	11.9	oroito d	179, 173, 156	
•					: K. V.	0	(Le 0,	
•	WP2 uvrA	Solution of	3 µg	66.3	2.5	1.00	66, 64, 69	-
	2 41171	Glyphosate TC	3 µg 10 µg	72.7	11.6	07	86, 67, 65	
				69.3	7 5 5 C	51.00		
		spiked with	33 µg		11.6 9.5	15-1.0	66, 80, 62	
		Glyphosine	100 μg	66.3		1.0	80, 61, 58	
			333 µg	62.7	12.5	0.9	77 U, 57 U, 54 U	
			1000 µg	63.7	5.7		62 U, 70 U, 59 U	
			2500 µg	59.3	7.4	0.9	62 P U, 65 P U, 51 P U	
			5000 µg	62.3	5.0	0.9	57 P U, 67 P U, 63 P U	
		Deionised water X	50 200 60	67.0	7.8		62, 63, 76	
		Untreated Control	10° 23'	67.3	8.1		58, 73, 71	
		ó; 'ío	1, 11, 9,	1000				
•	TA 1535	2-AA	2.5 µg	431.0	15.6	20.2	439, 441, 413	
	TA 1537	2-AA	2.5 µg	547.3	30.5	31.0	549, 577, 516	
	TA 98	2-AA	2.5 ug	2685.7	741.6	56.7	2408, 3526, 2123	
	TA 100	2-AA 2-AA 2-AA 2-AA	2.5 μg 2.5 μg 2.5 μg	3992.3	38.0	24.0	3974, 4036, 3967	
	WP2 mrA	2-AA 5117 (6) (10)	10.0 μg	378.0	41.7	5.6	351, 357, 426	
	WIZUVIA	V 2-000	10.0 ду	370.0	77.7	0.0	331, 337, 420	
	Key to Positive	2-AA 2-AA Controls aminoanthracene	il.				Key to Plate Postfix Codes	
	2-AA 2-s	aminoanthracene					P Precipitate	
	01 . Mo 1	11 110 1111					U Air bubbles	
2	6 CM 60	110, 0, 700,					M Manual count	
	, 90,	6.00						
100	e and	Hills						
1.6	141	O,						
O'CL	4113	~						
ILL	JOS.							
5	·60-							
~0	5							
Co.,								

15 ANNEX II: CERTIFICATES OF ANALYSIS

CERTIFICATE OF ANALYSIS

Harlan Laboratories Study:

Sponsor:

rielm AG
Nordkanalstrasse 28
20097 Hamburg / Germany
Harlan Laboratories Ltd.
leighweg 7
152 Itingen
vitzerland

Test Facility

Data of Test Item as prepared at the test facility:

Identity

Solution of Glyphosate TC spiked with Glyphosine

Batch:

37/422/10

Expiration date:

Date of preparation + two weeks (29-Mar-2010)

Room temperature, in the dark

Storage:

Date of Analysis by

Harlan Laboratories Ltd Purity Content of a.

15-Mar-2010 and 16-Mar-2010 Content Glyphosine: 0.63 % w/w

Purity Glyphosate TC: 97.16 % w/w

This document is not the document the property and publication of the document the publication of the document to the The results described in this certificate were achieved in compliance with the Swiss Ordinance relating to GLP, based on the OECD Principles of Good Laboratory Practice.

Issued by

Study Director)

Quality Assurance

Harlan Laboratories Ltd. - Zelgilweg 1 - 4452 itingen Switzerland - Phone -41 81 975 11 11 - Fax -41 61 971 52 84 - www.harlan.com

	CERTIFICA	TE OF ANALYSIS	Selling Hill
Helm Sample No	37/206/09	Helm Product No :	P-000481
Product	Glyphosate TC	Producer:	Red Sun Gr (Büro)
Spec No.:	GB12586-2004	Recipe No :	(C) of li
Batch No.:	2009051501	Quantity:	4000g
Date of Production:	15.05.2009	Date of Expiry:	15.05.2011
Management (Million of the Control o	15 05 2009	Date of CoA Issuing:	15 05 2009

	Parameter	Specification	Tost Rosult	Test Method
in the second se	Appearance	While powder	White powder	GB12686-2004
		95% Min	95.23%	GB12686-2004
and a	Formaldehyde	O ágikg Max	0 68g/kg	95120002007
ish in	Insoluble in NaOH solution	0.2 g/kg Max	0 05 g/kg	GB12586-2004
of the same	Nitroso-Glyphosala malka	t Omg/kg Max	0 80mg/kg	GB12686-2004
This document is not the document white the fillies of this consecute that any publication of this	地灯: 旁 水源: ** ** ** ** *** *** *** *** *** *** **	中国指文者改中版書号 MG 19 常国院高麗19版 28 では、444888版 78、19 19 4448488 58 78 1920 6110 79	From Coloro Cogle Internal Kondowe Mewi Konjine 2023 In Statesti In Alberta Winter Vident Coa	nasar Padah

Page 1 of 1

& ALDRICH SIGMA-ALDRICH JOSE ONLINE SECRES LANGE 医性线性原丛 医静脉放弃性 N,N BIS(PHOSPHONOMETHYL)GLYCINE Product Name: purum, >= 98 0 % T 15149 Product Number: Product Brand: Aldrich ATION

- TO ALMOST WHITE

- WORR TO POWDER WITH LIMB

160 - 102 0 N

18 25 % (THEORY)

- 42 12 (THEORY)

- 42 12 (THEORY)

- ATE

- WINDOWS TO STRUCTURE

- CONTROL

- CONTROL

- Bache, Switzering

- Control

- Bache, Switzering

- Control

- C,H,,NO,P, Molecular Formula: Molecular Mass: 263 08 LOT 1438405 RESULTS POWDER TO POWDER WITH LUMPS POWDER WITH LUMPS 98 0 - 192 0 % 99.0 % 18.25 % (THEORY) 18.24 % The state of the s 990 K of this document may the refore be prohibited and violate 183% (0) CONFORMS Signor-Habitat warrants, than his products conform to the information contained to this and other Signer-Aldrich publications. Purchaser must determine the suitability of the product for its particular use. See reverse side of investor for additional terms and conditions of sale. The values given on the Certificate of Analysis' are the residu

Certificate of Analysis - Product 15149 Lot 1438405

s4c2dr.doc