

LPT Report No. 23916

MUTAGENICITY STUDY OF GLYPHOSATE TC IN THE SALMONELLA TYPHIMURIUM REVERSE MUTATION ASSAY (IN VITRO)

- according to Council Regulation (EC) No. 440/2008 B.13/14, OPPTS Guideline 870.5100 and OECD Guideline 471 -

Helm AG
Nordkanalstraße 28
20097 Hamburg
Germany

Contact person:

Study conducted by:

LPT Laboratory of Pharmacology and Toxicology GmbH & Co. KG 21147 Hamburg

Contact person:

April 30, 2009

This report consists of 34 pages.

TABLE OF CONTENTS

			age
ST	ATEMEN1	OF COMPLIANCE	3
QU	ALITY AS	SSURANCE STATEMENT	4
1.	SUMMA	SURANCE STATEMENT	ر الا
2.	GENERA	LINFORMATION	7
۲.	2.1	Aim of experiment	<i>1</i> 7
	2.2	Sponsor / Test Facility / Responsible personnel	, 7
	2.2	Dulan and constations	_
	2.4	Archives	อ
	2.5	Study dates	9
	2.6	Study Plan deviations	9
3.	TECT IT	Archives	40
Э.	2 1	Identification of the test item	. 10
	3.1	Description	. IU
		Description	. 10
4.		DS	. 11
	4.1	Principle	. 11
	4.2		
	4.3	Dose levels / Solvents / Reference items	
	4.4	Procedure for growing cultures	
	4.5	Metabolic activation system	
	4.6	Main test procedure	
	4.7	Quality criteria	. 17
	4.8	Evaluation	. 18
5.	RESULT	3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	. 19
6.	REFEREN	Ouality criteria	. 20
75.	TABLES	13 till de la fille	
10.	3) O.O.	Preliminary cytotoxicity test	21
1. 1	2/17 :01	Summarized data	
3) 3	(3, (8)) k	Individual data	
SUI	APPEND		
A	1	Certificates of Analysis	30
9.	2	GLP Certificate of the Test Facility LPT	

This document is not the document of the docum

STATEMENT OF COMPLIANCE

AGENICITY STUDY OF GLYPHOSATE TC IN THE SALMONELLA TYPHIMURIUM EVERSE MUTATION ASSAY UN VITPO ing to Council Regulation (F) inideline 870.5100 REVERSE MUTATION ASSAY (IN VITRO)

- according to Council Regulation (EC) No. 440/2008 B.13/14, OPPTS Guideline 870.5100 and OECD Guideline 471

The study was performed in compliance with:

- 'Good Laboratory Practice' Regulations of the EC enacted in Germany in the 'Chemikaliengesetz' [Chemicals Act], current edition;
- 'OECD Principles of Good Laboratory Practice' Document Nos. 1 and 13 ENV/MC/CHEM (98) 17, ENV/JM/MONO (2002) 9, respectively.

The following regulations were considered:

- United States Food and Drug Administration Good Laboratory Practice Regulations - 21 Code of Federal Regulations, Part 58, current edition;
- Japanese Guidelines for Non-clinical Studies of Drugs Manual 1995; Guidelines for Toxicity Studies of Drugs. Japanese Ministry of Health and Welfare.

There were no deviations from the 'Good Laboratory Practice' Regulations. Raw data obtained during the performance of the study are accurately reflected.

STORY DIRECTOR

QUALITY ASSURANCE STATEMENT

Based on a quality assurance review, it was concluded that this report accurately reflects the raw data for the study. Methods, procedures and observations are correctly and completely described in the report.

MUTAGENICITY STUDY OF GLYPHOSA IN THE SALMONELLA TYPHIMURIUM REVERSE MUTATION ASSAY (IN VITRO)

- according to Council Regulation (EC) No. 440/2008 B.13/14, OPPTS Guideline 870.5100 and OECD Guideline 471 -

Study Plan dated	I January 28, 2009	
Date of control	Criteria	Date of report to the Study Director and the Management
20 Jan 2009 / 22 Jan 2009	General inspection of mutagenicity studies in the Salmonella typhimurium reverse mutation assay: administration of test item, preparation of dilutions for the plate incorporation test, placing of test components onto minimum agar, incubation, evaluation, raw data, SOPs	20 Jan 2009 / 22 Jan 2009
28 Jan 2009	Study Plan	28 Jan 2009
30 Apr 2009	Final Report	30 Apr 2009

Approved and submitted by:

> Director of Quality Assurance Unit (QAU)

1. SUMMARY

Glyphosate TC was examined in the 5 Salmonella typhimurium strains TA 98, TA 100, TA 102, TA 1535 and TA 1537 in two independent experiments, each carried out without and with metabolic activation (a microsomal preparation derived from Aroclor 1254-induced rat liver). The first experiment was carried out as a plate incorporation test and the second as a preincubation test.

Glyphosate TC was dissolved in aqua ad iniectabilia.

Preliminary test

Glyphosate TC was examined in a preliminary cytotoxicity test without metabolic activation in test strain TA 100 employing a plate incorporation test. Ten concentrations ranging from 0.316 to 5000 μ g/plate were tested. Cytotoxicity (scarce background lawn and/or reduction of the number of revertants by more than 50%) was noted at concentrations of 3160 and 5000 μ g/plate.

Hence, 3160 μ g/plate were chosen as the top concentration for the main study.

Main study

Five concentrations ranging from 31.6 to 3160 μ g/plate were employed in independent experiments each carried out without and with metabolic activation.

Cytotoxicity <

Cytotoxicity (scarce background lawn) was noted at the top concentration of 3160 μ g/plate in the <u>plate incorporation test</u> and the <u>preincubation test</u>, each carried out without and with metabolic activation in any test strain.

Mutagenicity

No mutagenic effect (no increase in revertant colony numbers as compared with control counts) was observed for Glyphosate TC tested up to a cytotoxic concentration of 3160 μ g/plate in any of the 5 test strains in two independent experiments without and with metabolic activation (plate incorporation and preincubation test, respectively).

In conclusion, under the present test conditions Glyphosate TC tested up to a cytotoxic concentration of 3160 μ g/plate caused no mutagenic effect in the Salmonella typhimurium strains TA 98, TA 100, TA 102, TA 1535 and TA 1537 neither in the plate incorporation test nor in the preincubation test each carried out

Date of Date o without and with metabolic activation. Juline of this document they are fore the following the following the following the first of the following the fol

2. GENERAL INFORMATION

2.1 Aim of experiment

The purpose of this study was to evaluate Glyphosate TC for mutagenic activity (gene mutation) in bacteria without and with the addition of a mammalian metabolic activation system as originally described by AMES et al. (1973, 1975) and revised by MARON and AMES (1983).

2.2 Sponsor / Test Facility / Responsible personnel

Sponsor

Helm AG

Nordkanalstraße 28 20097 Hamburg Germany

Monitor

Phone: E-Mail:

Test Facility

LPT Laboratory of Pharmacology and Toxicology GmbH & Co. KG

Redderweg 8 21147 Hamburg Germany

Phone:

+49 - 40 - 70 20 20

E-mail: LP

LPT-Hamburg@t-online.de

Study director/ Study conduct

LPT, Redderweg 8

21147 Hamburg, Germany

Deputy study director

Management

Statistics

Quality Assurance Unit (QAU)

Until January 31, 2009:

As of February 1, 2009:

Code number of the study in the raw data

23916

2.3 Rules and regulations

The study was performed in compliance with:

- OPPTS Guideline 870.5100 Bacterial Reverse Mutation Test, EPA 712-C-98-247, August 1988
- Council Regulation (EC) No. 440/2008 B.13/14: Mutagenicity (Salmonella typhimurium - reverse mutation test using bacteria); dated May 31, 2008;
- OECD Guidelines for Testing of Chemicals, No. 471, 'Bacterial Reverse Mutation Test', adopted July 21, 1997;
- ICH Guideline S2A: Genotoxicity: 'Specific Aspects of Regulatory Genotoxicity Tests for Pharmaceuticals (CPMP/ICH/141/95);
- ICH Guideline S2B: Genotoxicity: 'A Standard Battery for Genotoxicity Testing of Pharmaceuticals (CPMP/ICH/174/95):

In addition, the 'Good Laboratory Practice' Regulations were considered (see the Statement of Compliance and the enclosed GLP Certificate of the Test Facility LPT).

Standard Operating Procedures (SOPs)

Staff safety

Archives Archives of ray and specimens Archives of raw data

All work was carried out according to Standard Operating Procedures which were followed for all stages of the study; they may be inspected in those divisions which were engaged in the study and in the Quality Assurance Unit (QAU).

The standard safety precautions operating within the department were applied to this study.

All specimens, raw data and other documents generated at LPT during the course of this study, together with a second print of the final report, are stored in the LPT archives as required by the German 'Chemikaliengesetz' [Chemicals Act]:

During the course of the study: in the depot LPT, Redderweg 8 21147 Hamburg Germany

After reporting:

written raw data, specimens and a second print of the final report in the Archive 11 LPT, Redderweg 8 21147 Hamburg Germany

The final report will be archived by the Sponsor.

Duration of storage

According to the periods laid down in the German 'Chemikaliengesetz' [Chemicals Act]; afterwards the Sponsor will decide on further

2.5 Study dates

Start of study

January 28, 2009 Date of Study Plan

Start of the

experimental phase

February 4, 2009 February 2009 Period of treatment

Study termination

Termination of the experimental phase

February 27, 2009

Date of the final report

April 30, 2009

Study Plan deviations

The study was conducted in accordance with the Study Plan agreed upon. There were no major deviations from this Study Plan. However, the following minor deviation was noted:

Personnel change in the head of Quality Assurance Unit:

until January 31, 2009: Dipl. Biol

as of February 1, 2009: Dr. med. vet.

This minor deviation from the Study Plan did not have any effect on the scientific outcome or the validity of the study.

3. TEST ITEM

3.1 Identification of the test item

After receipt at LPT, the test item was inspected. Batch number, amount and characteristics (colour, consistency and form) were determined and compared with information given by the Sponsor. An identification sheet was then filed with the raw data.

Test item	Parameter	LPT Identification	Sponsor Identification
Glyphosate TC	colour consistency	white solid	white solid
Gryphosate 10	form	powder	none

No further identification was performed by LPT for this study.

3.2 Description

Name Glyphosate TC

Batch No. 20080801

Sponsor's Sample No. 37/064/08

Active Ingredient(s)/Content Declared: 95% (w/w)
Analysed: 97.52% (w/w)

c.f. Manufacturer's Certificate of Analysis

attached in Appendix 1

Authenticated: 98.8% (w/w)

c.f. Certificate of Analysis issued by Ibacon

attached in Appendix 1

Formulation Type Technical grade active ingredient

Type Herbicide

Physical State at RT Solid

Colour White

Stability (expiry date) August 1, 2010

Date of production August 1, 2008

Receipt No. 41639

Date of receipt/Condition at

the receipt at the Test Facility

December 22, 2008

The test item was received in proper conditions.

Storage At room temperature

Safety precautions Routine laboratory hygienic procedures

Retention sample of the test item

Stored at LPT Laboratory of Pharmacology and Toxicology GmbH & Co. KG Archive 11 Redderweg 8 21147 Hamburg Germany

4. METHODS

4.1 Principle

The Salmonella typhimurium histidine (his) reversion system is a microbial assay which measures $\underline{\text{his}}^+ \to \underline{\text{his}}^+$ reversion induced by chemicals which cause base changes or frameshift mutations in the genome of this organism.

Upon a layer of histidine-free agar (minimum agar), a second layer containing test organisms and test item (top agar) is placed. A trace of histidine in the top agar allows the logarithmic division of the histidine-requiring bacteria in the presence of the test item and any of its metabolites generated by the S9 mix. This period of several generations of auxotrophic cell division is essential for the fixation of promutagenic lesions in the DNA, and results in the formation of a lawn of histidine-requiring bacteria whose further division is prevented by exhaustion of histidine. Only that small fraction of bacteria which has reverted to histidine-independence (either spontaneously or by the action of the test chemical) will continue to divide to form discrete, randomly distributed visible colonies, each one of which consists of the progeny of a single mutant bacterium. The assay determines whether the addition of graded concentrations of the test item to a series of such plates induces a concentration-related increase in mutant colonies compared with plates treated only with the appropriate volume of the solvent.

Two independent experiments were carried out each without and with metabolic activation, each experiment consisted of 3 plates/concentration and strain.

The first experiment was carried out as the standard plate incorporation method whereas the second was carried out as the preincubation method.

4.2 **Test strains**

5 strains of Salmonella typhimurium Strains

(TA 98, TA 100, TA 102, TA 1535, TA 1537)

31.6, 100, 316, 1000 and 3160 µg/plate Concentrations

3 per concentration and experiment **Plates**

2 independent experiments without and with Data

metabolic activation

The following Salmonella typhimurium strains were used in this study - obtained -: TA 98 and TA 1537 which primarily respond to from frameshift mutagens and TA 100, TA 102 and TA 1535 which respond to basepair substitution mutagens. In addition to the mutation in the histidine operon, these strains contain several other mutations that greatly increase their ability to detect mutagens.

The growth requirements and the genetic identity of the strains, their sensitivity to UV-radiation and crystal violet and their resistance to ampicillin and tetracycline are regularly checked (see section 4.7). The strains used yield spontaneous revertants within the frequency ranges expected.

For the mutagenicity experiments, frozen permanent copies of the test strains were used.

	Strain Designation	Histidine Gene Locus	Type of Mutation Detected			
	0, FLS, 211,	Affected	Repair	LPS	Plasmids	
	(A 98)	his D 3052	uvr B	<u>rfa</u>	pKM 101	Frameshift
0,0	TA 100	his G 46	uvr B	rfa ⁻	pKM 101	Base-pair
"he oc	n kning, of	You			'	substitution
you we do	TA 102	his G 428	wild-type	<u>rfa</u>	pKM 101 /	Base-pair
die di	17 01				pAQ1	substitution
iner. ilei	TA 1535	his G 46	uvr B	<u>rfa</u>	-	Base-pair
yoch. seod						substitution
This document is not the doc	TA 1537	<u>his</u> C 3076	uvr B	<u>rfa</u>	-	Frameshift
	<u>rfa'</u> :	•	f lipopolysacch to macromolec		6) barrier that ca	uses increased
	uvr B*:		excision repair			

uvr B:

loss of DNA excision repair system

pKM 101:

R-factor plasmid, thought to cause an increased error-prone DNA repair

pAQ1:

plasmid, carrier of tetracycline resistance

4.3 Dose levels / Solvents / Reference items

Glyphosate TC was dissolved in aqua ad iniectabilia¹ shortly before use. The vehicle served as the negative control.

Preliminary to the main test a cytotoxicity test was carried out as a plate incorporation test without metabolic activation using strain TA 100 and the procedure described in 4.6.

Toxicity is evidenced by a reduction in the number of spontaneous revertants, a clearing or diminution of the background lawn or by the degree of survival of the treated cultures. Insolubility could have been assessed as precipitation in the final mixture under the actual test conditions and evident to the unaided eye. The recommended maximum test concentration for soluble non-cytotoxic test items is 5 mg/plate or 5 μ L/plate. Test items that are cytotoxic already below 5 mg/plate or 5 μ L/plate were tested up to a cytotoxic concentration. The precipitate should not interfere with the scoring.

In the main study 5 different concentrations of the test item were tested, with half-log intervals between plates (31.6, 100, 316, 1000 and 3160 μg/plate).

Batch no. 15810631; DeltaSelect GmbH, 63303 Dreieich, Germany

The following chemicals served as positive control items:

a) without metaboli	c activation
sodium azide² in H₂O³ (10 µg/plate)	TA 1535, TA 100
2-nitro-fluorene ⁴ in DMSO ⁵ (10 μ g/plate)	TA 98
9-amino-acridine 2 in ethanol, abs. 6 (100 μ g/plate)	TA 1537
methyl methane sulfonate ⁷ (MMS) in DMSO ⁵ (1300 μg/plate)	TA 102
b) with metabolic	activation
2-amino-anthracene² in DMSO ⁵ (2 μg/plate)	TA 98, TA 102, TA 1537
cyclophosphamide² in <i>aqua ad iniectabilia</i> ³ (1500 µg/plate)	TA 100, TA 1535

The solvent aqua ad iniectabilia was used as negative reference item (all test strains).

4.4 Procedure for growing cultures

Test strains in nutrient broth containing 8% dimethyl sulfoxide (DMSO) were kept as frozen permanents in liquid nitrogen. For the mutagenicity experiments, frozen permanent copies of the test strains were thawed at room temperature and then used for inoculating the overnight cultures.

Overnight cultures were grown in a gyrorotary incubator (10 h/37°C) in Oxoid 28 nutrient broth. The final cell density was approximately 108 - 109 cells/mL.

SIGMA-ALDRICH Chemie GmbH, 82024 Taufkirchen, Germany

³ DeltaSelect GmbH, 63303 Dreieich, Germany

⁴ Riedel de Haën AG, 30926 Seelze, Germany

⁵ DMSO, spectrometric grade; E. MERCK, 64293 Darmstadt, Germany

Ethanol spectrometric grade; E. MERCK, 64293 Darmstadt, Germany

E. MERCK, 64293 Darmstadt, Germany

⁸ Oxoid 2, UNIPATH GmbH, 46467 Wesel, Germany

4.5 Metabolic activation system

Post-mitochondrial fraction (S9 fraction) from rats treated with Aroclor 1254 was prepared according to MARON and AMES (1983). S9 was collected from 20 - 30 rats.

The pooled fraction was tested for:

- protein content, according to LOWRY et al. (1951)
- P-450 content, according to MAZEL (1971)

The protein content of the S9 fraction was 31.55 mg/mL S9, cytochrome P-450: 0.41 nmol/mg protein.

The S9 fraction was stored in liquid nitrogen. The S9 mix was freshly prepared on the day of the test according to MARON and AMES (1983): containing 5% S9 and the following components (per 100 mL):

- 5.0 mL rat liver S9 (Aroclor 1254-induced)
- 2.0 mL 0.4 M MgCl₂ + 1.65 M KCl-salt solution (sterile stock solution)
- 141.0 mg glucose-6-phosphate
- 306.5 mg NADP
- 50.0 mL 0.2 M phosphate buffer, pH 7.4 (sterile stock solution)
- sterile aqua ad iniectabilia ad 100 mL

Afterwards, the S9 mix was filter-sterilised by using a 0.45 μm filter and then kept on ice.

4.6 Main test procedure

First independent experiment - Plate Incorporation Method

Sterile top agar containing 0.6% agar and 0.5% NaCl was molten on the day of the test. 10 mL of a sterile solution of 0.5 mM L-histidine HCI/0.5 mM biotin were added to 100 mL of molten agar. 2 mL of this top agar were distributed into culture tubes held at 45°C in a heating block. 0.1 mL of *Salmonella* cell suspension (containing approximately 10⁸ viable cells in the late exponential or early stationary phase), 0.1 mL of test item solution (or 0.1 mL solvent or 0.1 mL positive control) and 0.5 mL of S9 mix were added to these culture tubes. In the assay without metabolic activation, the S9 mix was substituted with 0.5 mL phosphate buffer mentioned above.

The test components were mixed by vortexing the soft agar for 3 sec at low speed and then poured onto a coded 27.5 mL minimal glucose agar plate (Vogel-Bonner medium E). To achieve a uniform distribution of the top agar on the surface of the plate, the uncovered plate was quickly tilted and rotated and then placed on a level surface with the cover on and finally allowed to harden.

Immediately, the plates were inverted and placed in a dark 37°C incubator for 48 to 72 hours. The revertant colonies on the test plates and on the control plates were counted with a colony counter⁹, and the presence of the background lawn on all plates was confirmed. A lawn that was thin compared with the lawn on the negative control plate was evidence of bacterial toxicity.

Routine examination of the background lawn of bacterial growth resulting from the trace of histidine added to the top agar can be an aid in determining the presence of toxic effects. If massive cell death has occurred, the background lawn on the test plates will be sparse compared with control plates.

In this case more histidine is available to the individual surviving bacteria and they undergo more cell divisions, consequently appearing as small colonies which can be mistaken for revertants if the absence of a normal background lawn is not noted.

⁹ Biocount 2000, Biosys

Second independent experiment - Preincubation Method

The test item/test solution was preincubated with the test strain (containing approximately 108 viable cells in the late exponential or early stationary phase) and sterile buffer or the metabolic activation system (0.5 mL) for 20 minutes at 37°C prior to mixing with the overlay agar and pouring onto the surface of a minimal agar plate. 0.1 mL of the test item solution, 0.1 mL of bacteria, and 0.5 mL of S9 mix or sterile buffer, were mixed with 2 mL of overlay agar. Tubes were aerated during preincubation by using a shaker. The remaining steps were the same as described for the plate incorporation method.

Quality criteria 4.7

The genotypes of the test strains are regularly confirmed in the following way:

Histidine and biotin requirement ((his) (bio)): a)

Each of the five strains is streaked onto two Vogel-Bonner medium E plates in the following way:

- with 0.1 mM L-histidine and 0.5 mM biotin (100 μL/each) 1)
- 2) with 0.5 mM biotin (100 μ L/each)

After incubation at 37°C for 24 hours, none of the strains should grow on plate 2; all strains should show excessive growth on plate 1.

b) (rfa') deep rough character:

10 pL of 0.1% crystal violet applied with a paper disc should give zones of inhibition in all test strains after incubation at 37°C for 24 hours.

UV-sensitivity (uvr B'):

Plates are covered partly with black paper and placed under germicidal UVirradiation. After incubation at 37°C for 24 hours, all strains except TA 102 should grow only under the covered portion of each plate. TA 102 should also grow under the uncovered area.

This document is not the property, and Ampicillin-resistance (pKM 101):

0.8 mg ampicillin/plate is placed onto plates seeded with bacteria: Absence of zones of inhibition around the discs indicate resistance to ampicillin (TA 98, TA 100 and TA 102), whereas strains TA 1535 and TA 1537 show zones of inhibition.

e) Ampicillin- and tetracycline-resistance

The pAQ1 strain (TA 102) is tested for both ampicillin and tetracycline resistance on ampicillin/tetracycline plates.

4.8 Evaluation

The statistical evaluation of the results of the AMES test is still under discussion. In our laboratory, a test item is considered to show a positive response if

- the number of revertants is significantly increased (p ≤ 0.05, U-test according to MANN and WHITNEY, see section 6, reference 3) compared with the solvent control to at least 2-fold of the solvent control for TA 98, TA 100 and TA 102 and 3-fold of the solvent control for TA 1535 and TA 1537 in both independent experiments;
- in addition, a significant (p ≤ 0.05) concentration (log value)-related effect (Spearman's rank correlation coefficient, see section 6, reference 3) is observed;
- positive results have to be reproducible and the histidine independence of the revertants has to be confirmed by streaking random samples on histidine-free agar plates.

The range of spontaneous reversion frequencies in our laboratory are generally

TA 98:5	20 - 60
TA 100;	100 - 200
TA 102:	240 - 320
TA 1535:	10 - 35
TA 1537:	3 - 20

The numbers may be slightly different on plates with S9 and may vary slightly from experiment to experiment.

Cytotoxicity is defined as a reduction in the number of colonies by more than 50% compared with the solvent control and/or a scarce background lawn.

5. RESULTS

Preliminary test

Glyphosate TC was examined in a preliminary cytotoxicity test without metabolic activation in test strain TA 100 employing a plate incorporation test. Ten concentrations ranging from 0.316 to 5000 μ g/plate were tested. Cytotoxicity (scarce background lawn and/or reduction of the number of revertants by more than 50%) was noted at concentrations of 3160 and 5000 μ g/plate.

Hence, 3160 μ g/plate were chosen as the top concentration for the main study.

Main study

Five concentrations ranging from 31.6 to 3160 μ g/plate were employed in independent experiments each carried out without and with metabolic activation.

Cytotoxicity

Cytotoxicity (scarce background lawn) was noted at the top concentration of 3160 μ g/plate in the <u>plate incorporation test</u> and the <u>preincubation test</u>, each carried out without and with metabolic activation in any test strain.

Mutagenicity

No mutagenic effect (no increase in revertant colony numbers as compared with control counts) was observed for Glyphosate TC tested up to a cytotoxic concentration of 3160 μ g/plate in any of the 5 test strains in two independent experiments without and with metabolic activation (plate incorporation and preincubation test, respectively).

A summary of the results is given in table 2 and individual values are listed in table 3.

6. REFERENCES

- AMES, B. N, W. E. DURSTON, E. YAMASAKI and F. D. LEE: Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. *Proc. Nat. Acad. Sci. USA* 70, 2281 - 2285 (1973)
- AMES, B. N., J. McCANN and E. YAMASAKI: Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutation Res. 31, 347 - 364 (1975)
- COLQUHOUN, D.: Lectures on Biostatistics, Clarendon Press, Oxford (1971)
- LOWRY, O. H., N. J. ROSEBROUGH, A. L. FARR and R. J. RANDALL: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265 - 275 (1951)
- MARON, D. M. and B. N. AMES: Revised methods for the Salmonella Mutagenicity test. Mutation Res. <u>113</u>, 173 - 215 (1983)
- MAZEL, P.: Determination of cytochrome P-450 in Ladu, Mandel and Way (Ed.): Fundamentals of drug metabolism and drug disposition. Williams & Wilkins Co (1971) Baltimore, p. 573 – 574.
- 7. WEBER, E.: Grundriss der biologischen Statistik, Gustav Fischer Verlag, Stuttgart (1967)

Mutagenicity study of Glyphosate TC in the Salmonella typhimurium reverse mutation assay (in vitro)

TABLE 1

Preliminary cytotoxicity test

	Test item (μg/plate)	Plate incorporation test Background lawn	Revertants per plate (TA 100) (cytotoxicity)
	Glyphosate TC		plate 1 / plate 2
	5000	scarce background lawn	60 / 51
	3160	scarce background lawn	95 / 106
	1000	normal management	106 / 144
	316 wide	normal (normal)	177 / 133
	100 0 15 10 100	normal	168 / 119
	31.60	normal	162 / 155
	of L 10.0 this till no	normal	106 / 138
,Qe ^j	3.160	normal	149 / 104
ine of the	() () () () () () () () () ()	norma1	125 / 122
is rothedo	0.316 ⁵	normal	114 / 146
is document is consequently	Solvent control 100 µL/plate	scarce background lawn scarce background lawn normal normal normal normal normal normal normal	156 / 123

Mutagenicity study of Glyphosate TC in the <u>Salmonella typhimurium</u> reverse mutation assay (<u>in vitro</u>)

	TABLE 2			Summarized data			is lind	
	Test item		Plate incorporation test w i t h o u t metabolic activation Number of reverted colonies					
	(μg/plate)		TA 98	TA 100	TA 102	TA 1535	TA 1537	
				mean	values ± SD	in ett		
	Glyphosate TC			Š	10°01, 10°0	sic, Jei.		
	3160	mean SD	36.3 # 2.1	109.0 # 3.6	values ± SD 259.0 # 3.6	28.7 # 2.5	4.3# 0.6	
	1000	mean SD	30.0 1.7	124.0 13.1	266.0 7.0	30.3 0.6	4.7 1.5	
	316	mean SD	30 3	143.0 4.6	259.0 3.6	28.7 3.2	4.7 0.6	
	100	mean SD	33.3 0.6 0.6	143.0 12.5	274.0 4.0	25.3 4.5	6.7 1.2	
	1000 316 100 31.6 Negative refere 100 µL/plate	mean SD	39.7 7.6	126.0 7.0	268.3 2.5	25.7 2.5	6.7 1.2	
	Negative refere	nce item	ks.					
	100 µL/plate	mean SD	42.7 11.4	138.7 11.7	269.7 4.7	30.7 4.9	6.7 0.6	
This document is not the documently	Positive reference item		2-Nitro- fluorene	Sodium azide	Methyl- methane sulfonate	Sodium azide	9-Amino- acridine	
40CIII.	Concentration μ g/plate		10	10	1300	10	100	
This Court	•	mean SD	393.7 28.6	720.3 31.2	1045.0 19.2	366.7 8.1	364.0 21.0	

scarce background lawn SD standard deviation mean (n = 3)

Mutagenicity study of Glyphosate TC in the <u>Salmonella typhimurium</u> reverse mutation assay (<u>in vitro</u>)

	TABLE 2	•	THE GATHIOTICS TO	Summarize	d data	X.	Sunde	
	Test item			withm	ncorporation etabolic acti reverted col	vation :	on and use	
	(µg/plate)		TA 98	TA 100	TA 102	TA 1535	TA 1537	
	V./-			mea	n values ± SD	editis exe		
	Glyphosate TC			:01/1	of copy cited	28.7#		
	3160	mean SD	26.3 # 4.0	107.3# 2.1	256.0 # 4.4	28.7 # 3.2	4.0 # 1.0	
	1000	mean SD	32.3 11.0	128.7 9.5	272.0 5.3	32.7 3.2	5.7 1.5	
	316	mean SD	42.0 7.0	132.7	274.7 5.5	28.3 3.8	6.0 1.0	
	100	mean SD	32.0 1.0	134.3 7.2	269.7 4.5	29.0 2.6	7.3 0.6	
	1000 316 100 31.6 Negative refere 100 \(\pu\) / plate	mean SD	41.7	150.7 32.7	279.3 5.7	28.7 1.5	5.0 1.0	
of old at	Negative refere 100 µL/plate	ence item mean	42.0	158.3	274.0	30.0	6.3	
is not the document	SUN DID. OF 90	SD	2.0	16.0	5.6	3.0	0.6	
Schnent, sequentily	Positive reference item		2-Amino- anthracene	Cyclophos- phamide	2-Amino- anthracene	Cyclophos- phamide	2-Amino- anthracene	
This of Cons	Concentration μ g/plate		2	1500	2	1500	2	
This document is not the diocum		mean SD	387.0 10.5	730.7 9.3	1159.3 31.4	375.0 12.5	375.3 24.6	

scarce background lawn SD standard deviation mean (n = 3)

Mutagenicity study of Glyphosate TC in the <u>Salmonella typhimurium</u> reverse mutation assay (<u>in vitro</u>)

	_	_	
TARI	Е	2	

Summarized data

	Test item		W	ithout	cubation test metabolic ac reverted colo	tivation mies	anduse
((µg/plate)		TA 98	TA 100	TA 102	TA 1535	TA 1537
_				mean	values ± SD	ine et plon	
0	Glyphosate TC			ç	Ollow ight to	Sicial St.	
	3160	mean SD	36.3 # 0.6	140.0# 8.7	2 (03.60	19.0# 5.6	5.0 # 1.0
	1000	mean SD	43.0 6.1	146.0 10.6	260.3 3.2	19.0 # 5.6 24.0 5.6	6.0 1.0
	316	mean SD	39.0 CH	161.3 10.1	278.3 5.0	17.0 3.6	6.3 1.5
	100	mean SD	44.3 5.7	145.3 24.6	275.0 9.0	16.3 2.3	6.3 1.2
	100 31.6 Negative refere	mean SD	43.0 6.1 39.0 7.0 44.3 5.7	150.0 6.6	277.7 7.0	22.0 3.6	5.7 2.5
	Negative refere 100 μL/plate	nce item	Aille An a	150.0		10.7	4.2
the Property	Tripelication to	mean SD	40.3 6.8	6.2	267.0 12.5	18.7 6.1	4.3 0.6
July Bully .	Positive reference item		2-Nitro- fluorene	Sodium azide	Methyl- methane sulfonate	Sodium azide	9-Amino- acridine
sedille (Concentration ug/plate		10	10	1300	10	100
Cour		mean SD	468.7 12.6	691.7 26.6	1178.3 15.3	366.7 24.9	463.7 18.0

[#] scarce background lawn
SD standard deviation

mean (n = 3)

Mutagenicity study of Glyphosate TC in the <u>Salmonella typhimurium</u> reverse mutation assay (<u>in vitro</u>)

TABLE 2			Summarize	d data		under
Test item	· · ·	Preincubation test with metabolic activation Number of reverted colonies				
(μg/plate)		TA 98	TA 100	TA 102	TA 1535	TA 1537
				30	of the stolog	· · · · · · · · · · · · · · · · · · ·
			mean	n values ± SD	(SOL)	٠
Glyphosate TC			J.	oby cito,	We el Me	
3160	mean SD	44.7# 0.6	161.0# 5.3	262.0# 3.6	18.0 # 2.6	5.7# 0.6
1000	mean SD	41.3 0.6	157.0 20.1	264.7 8.6	21.3 8.1	7.0 1.0
316	mean SD	51.0 11.5	139.7 4.0	271.0 6.1	21.0 6.1	6.7 1.2
100	mean SD	50.7 1.5	164.0 1.0	268.7 2.5	19.7 5.5	6.3 0.6
Glyphosate TC 3160 1000 316 100 31.6 Negative refere 100 µL/plate Positive reference item	mean SD	47.7° 3.1	166.0 13.7	281.3 8.5	20.0 2.0	6.7 2.3
Negative refere	nce item	to				
Positive	mean SD	52.0 12.2	152.3 9.7	274.3 16.9	19.7 3.5	6.7 0.6
Positive reference item Concentration µg/plate		2-Amino- anthracene	Cyclophos- phamide	2-Amino- anthracene	Cyclophos- phamide	2-Amino- anthracene
Concentration μ g/plate		2	1500	2	1500	2
C_{O} ,	mean SD	482.3 5.0	700.7 11.7	1160.0 29.5	384.0 12.1	439.7 15.7

scarce background lawn SD standard deviation

mean (n = 3)

Mutagenicity study of Glyphosate TC in the Salmonella typhimurium reverse mutation assay (in vitro)

		III LIIC Jani	onerra cypirmuri	um reverse muc	arion assay (1	ii witi U)
TABLE 3	3		Indiv	idual data	onis	NI.
Test it	tem		withouti	orporation test metabolic active everted coloni	vation	ion and us
(μg/pla		TA 98	TA 100	c.O.S	TA 1535	TA 1537
				THE MES	dill'O	
			<u>indivi</u>	dual counts	io cio	
G1 yphos	sate TC		××	or observed	The el Me	
	3160	38 #	110 # ⁽¹⁰⁾	256 # 258 # 263 #	31 # 29 # 26 #	5 #
	3100	31.#	105#	258 #	20 #	4#
		37 #	112 #	263 #	26 #	4 #
			Hecrophold	93,100,110	5	
	1000	32	('O) (33'\Q''\	269	31	5
		29	130	271	30	3
		29	109	258	30	6
	316	315	144	255	25	4
	010	29	11. 31. 143. Y. S.	260	31	5
	6;	32 (0)	138	262	30	5
	2011	Up May M	onis onis			_
	100	9, Kr. 340, K	(133	274	21	6
	0, 0, 1, 60	Co (833 Co	139	270	30	6
7	> 31.16Cr 0CD		15/	2/8	25	8
4,5	31-6	Arz (or	133	266	26	8
	S. Hu. All	31	126	268	23	6
10, 27	46, 912 CA	43	119	271	28	6
OEL, WILLIAM	10°100, 900	C. C. C.				•
Negativ	/e reference i	item				
100 μL)	plate ()	30	126	268	33	7
J. 11, 400 1 60	90	46	141	266	34	7
in only	e flying	52	149	275	25	6
Positiv	0	2.Nitro.	Sodium	Methyl.	Sodium	9-Amino-
referer	ce item	fluorene	azide	methane	azide	acridine
Con Contract	,cc	r raor ene	uz ruc	sulfonate	uz iuc	aci iaine
Concent	ration					
Regative 100 pt	te	10	10	1300	10	100
		AOE	EOE	1059	368	387
		423 227	000 7//	1030	308 374	387 346
		369	7 71 732	1023	37 4 358	3 4 6 359
		303	132	T//)4	330	333

scarce background lawn

Mutagenicity study of Glyphosate TC in the <u>Salmonella typhimurium</u> reverse mutation assay (<u>in vitro</u>)

	TABLE 3		Individual data			under	
	Test item	Plate incorporation test w i t h metabolic activation Number of reverted colonies					
	(µg/plate)	TA 98	TA 100	TA 102	TA 1535	TA 1537	
			indi	vidual counts	Soins the		
	Glyphosate TC			Diplidio	31 # 30 # 25 #	<·	
	3160	30 #	105 #	254.#	31 # 30 # 25 #)` 4 #	
		27 #	109 #	253 #	0 4 30 #	3 #	
		22 #	108 #	261#	25 # 29 35	5 #	
			*0 °C	93693	illi		
	1000	25	129	266	29	7	
		45	138	274	35	6	
		27		276	34	4	
	316	500	135 JO	260	30	7	
	310	30	1330	209	24	5	
		30%	132	275	31	6	
		15.016	10, 31, 400, 39	2/3	31	U	
	100	31	126	274	26	8	
	60,2	(32)	138	265	31	7	
	dis 6, i	. 10° 15' 330' C	139	270	30	7	
	31.6	⁵⁵ (55)	113	284	27	4	
	SK 1101, 90	, 10° , 051, €	172	281	30	6	
This document is not the documently.	3160 1000 316 100 31.6 Negative reference 100 \(\mu \text{L/plate} \)	11115 SA 336.	167	273	29	5	
-0,1	Negative reference	1tem	450	252	2=	_	
,0 ⁰ 0;	TOO NEADLAGE	44	159	268	27	7	
	The Hill of the Miles	42	142	2/5	33	6	
This document is not the documental	Labin O. 900	40	1/4	2/9	30	6	
1.15 / Me	Positive	2-Amino-	Cyclo-	2-Amino-	Cyclo-	2-Amino-	
Cent City	reference item	anthracene	phosphamide	anthracene	phosphamide	anthracene	
CILL COLLE							
305	Concentration	2	1500	2	1500	•	
This Co.	μg/prate	2	1500	2	1500	2	
		388	723	1147	388	388	
		376	741	1195	374	391	
		397	728	1136	363	347	

scarce background lawn

Mutagenicity study of Glyphosate TC in the <u>Salmonella typhimurium</u> reverse mutation assay (<u>in vitro</u>)

	TABLE 3		Indi	ividual data	n'is	n,	
	Test item	Preincubation test w i t h o u t metabolic activation Number of reverted colonies					
	(µg/plate)	TA 98	TA 100	TA 102	TA 1535	TA 1537	
			indiv	vidual counts	60, 9		
	Glyphosate TC			of Poy tion	24 #	٠	
	3160	36 #	146 #	258 #	24 # 13 #	5 #	
		36 #	144 #	266#	13 #	4 #	
		37 #	130 #	269 #	20 #	6 #	
	1000	46	48° 134	258	19	7	
	1000	47	2154	259	23	6	
		36	150	264	30	5	
	21.0	initia.	51. S. 14. 6. 16.	110	16	•	
	316	(12)	0 152	2/3	16 14	6 8	
		(44.71)	160	279	21	5	
	i	do so at icil	o, M, Holls				
	100	9/12 (389)	161	284	15	7	
	1,6 ,0	79 A9	117	2/5	15 19	5 7	
	and of the	Will Cotto	2 117	200	19	,	
	531.6	(ii) 051 (ci	157	277	26	6	
	Vis. Sins of Vis.	40	144	271	21	3	
Š	1000 316 100 31.6 Negative reference 100 µL/plate	July 139	149	285	19	8	
(OP)	Negative reference	item				_	
	100 µL/plate	38	157	281	24	4	
" "The Joch	L. OIL O. 900	35 49	145 149	257	20 12	4 5	
nothed	and this	70	140	203	12	J	
Kija 11 aija	Positive	2-Nitro-	Sodium	Methyl-	Sodium	9-Amino-	
This document is not the proper	reference item	fluorene	azide	methane sulfonate	azide	acridine	
:50	Concentration						
Kuiz Oz	μg/plate	10	10	1300	10	100	
		482	685	1175	357	482	
		467	721	1195	395	463	
		457	669	1165	348	446	

[#] scarce background lawn

Mutagenicity study of Glyphosate TC in the <u>Salmonella typhimurium</u> reverse mutation assay (<u>in vitro</u>)

	TABLE 3		Ind	lividual data	, č	3111	
	Test item	Preincubation test w i t h metabolic activation Number of reverted colonies TA 98 TA 100 TA 102 TA 1535 TA 1537 individual counts					
	(µg/plate)	TA 98	TA 100	TA 102	TA 1535	TA 1537	
			<u>indi</u>	vidual counts	(60, 10)		
	Glyphosate TC			into conecti	or west and	Ş.	
	3160	44 #	163 #	258 # 263 #	21 #	6#	
		45 #	165 #	263 #	17 # 16 #	5#	
		45 #	155 #	263 # 265 #	21 # 17 # 16 #	6 # 5 # 6 #	
y.	1000	41	176	274	25	7	
		41	159	263	12	8	
		42	136 10	257	27	6	
	316	1860	Ci (144)	275	25	8	
	010	600	JIT 136	274	24	6	
		Jed 2155 (8)	176 159 136 144 136 139 165 163 164	264	14	6	
	100	49 11	Ch (165)	269	14	7	
	-11	(19) (1) 510	163	271	25	6	
	and set to	JIMP (052 C	164	266	20	6	
	531 601 60	10 051 (e)	154	275	18	8	
	in Single Commission	(C) (C) 47	163	278	22	4	
	70, 17,000 go, 19eg	CUMP 2745	181	291	20	8	
o o o	Negative reference	edtem					
0,0	100 uL/plate	38	144	255	23	7	
" CIII	En 1101, 01 10ch	60	163	286	16	6	
This document is not the document.	Glyphosate TC 3160 1000 1000 316 100 31.6 Negative reference 100 μ L/plate	58	150	282	20	7	
Ment lenti	Positive	2-Amino-	Cyclo-	2-Amino-	Cyclo-	2-Amino-	
doculi.	reference item	anthracene	phosphamide	anthracene	phosphamide	anthracene	
inis Cont	Concentration						
	μ g/plate	2	1500	2	1500	2	
		477	688	1154	386	422	
		483	711	1192	371	445	
		487	703	1134	395	452	

scarce background lawn

APPENDIX, 1 of the production of the production

江苏籽收成弗恩农化股份有限公司 JIANGSU GOOD HARVEST-WEIEN AGROCHEMICAL CO. LTD.

1544 JIANGSU GOOD HARVEST-WE	
Certificate o	f Analysis
of Glyphos	ate Tech.
22 G-3, F-3-3	estidy stion
Name of product: Glyphosate Tech.	acces tilli
Manufacturer:	r costante dille ex
JIANGSU GOOD HARVEST-WEIEN AGROCHEMICA Ratch No: 20080801	COSTIBLY SOLVE
Quantity: 4000g (250g/bag, 16 bags)	of objection the of the
Date of production: Aug.1, 2008 Date of Test: Aug.2, 2008	d die con who con
Date of Expiry: Aug.1, 2010	10 0 11 10 OF 11 OF 11 10 OF 1
	Se la continue
the state of the s	O'S HOL GILL
Parameter	Value,
Certificate of Glyphos Name of product: Glyphosate Tech. Manufacturer: JIANGSU GOOD HARVEST-WEIEN AGROCHEMICA Batch No: 20080801 Quantity: 4000g (250g / bag , 16 bags) Date of production: Aug. 1, 2008 Date of Test: Aug. 2, 2008 Date of Expiry: Aug. 1, 2010 Parameter Appearance: Content of glyphosate (g/g):	white crystal powder
Content of glyphosate (g/g):	97.52%
IJANGSU GOOD HARVEST-WEIEN AGROCHEMICAL O (Stamp or Seal)	0.32
N-Nitrosoglyphosate(mg/kg):	0.43
Insolubles in 1M NAOH (g/kg):	0.11
Loss on Drying(g/g):	0.21%
Explication of the state of the	
CKE, Enry in Children, 100 late,	
01 10 6 1 15 11 11 M	0.770
JIANGSU GOOD HARVEST-WEIEN AGROCHEMICAL CO (Stamp or Seal) 注 点 史 W 版 主 题 宏 化 龄 杂 有 题 小	a,m.
OUALITY:	
(signature)	
is the si, the	in.
cent and	
curi. adule	
60° 015°	
(/,	

Glyphosate Tech. Glyphosate Tech

Name of the Test Item:

Batch No .:

Sponsor's (HELM AG) Sample No.:

Date of Production:

Date of Expiry:

Chemical Analysis:

Identity of the Active Ingredient:

466103

Ate Tech.

60801
37/064/08

August 01, 2008

August 01, 2010 The identity of the active ingredient of the test item was established by comparison of the retention time and by comparison of the UV-spectra obtained from solutions of the test item and certified reference material.

At room temperature, in the dark (as given by the sponsor)

Acon 48166(03

January 07 to 08, 2009

Solid, white

Storage Conditions:

At room temperature, in the dark (as given by
The product complied with the pertinent FAO Specification 1/TC/S/F 1992. January 07 to 08, 2009

aysis:

Stability:

Storage Conditions:

The productions

<u>llouch 24, 2009</u>
Date

page 1 of 1

APPENDIX 2 2

APPENDIX 2 2

OUT Certificate of the Test Facility LPT

FREIE UND HANSESTADT HAMBURG


Behörde für Soziales, Familie, Gesundheit und Verbraucherschutz

GLP - Bescheinigung / Statement of GLP Compliance

(gemäß/according to § 19b Abs.1 und Anhang 2 des Chemikaliengesetzes in der Neufassung vom 20 Juni 2002 (BGBl. I S. 2090) in der geltenden Fassung)

	(BGBl. I S. 2090) in der geltenden Fassung)
Eine GLP-In	spektion zur Überwachung der Einhaltung. Assessment of conformity with GLP according to
	rundsätze gemäß Chemikaliengesetz bzw. Chemikaliengesetz and Directive2004/9/EC at:
Richtlinie 20	04/9/EG wurde durchgeführt in:
X r	Prüfeinrichtung/Test facility Prüfstandort/ Test site
	Unverwechselbare Bezeichnung und Adresse/Unequivocal name and address:

LPT Laboratory of Pharmacology and Toxicology GmbH & Co. KG Redderweg 8 21147 Hamburg

