Substance: Glyphosate Cross Reference No.:5.4.1/04 Company file No.: R 480

REPORT

EVALUATION OF THE ABILITY OF CHILD

TO INDUCE CHROMOSOME ABERRATIONS IN CULTURED

PERIPHERAL HUMAN LYMPHOCYTES

(WITH INDEPENDENT REPEAT)

NOTOX Project 141918 NOTOX Substance 4803°

- page 1 of 28 -

STATEMENT OF GLP COMPLIANCE

NOTOX B.V., 's-Hertogenbosch, The Netherlands

The study described in this report was conducted in compliance with the most recent edition of:

The OECD Principles of Good Laboratory Practice

which are essentially in conformity with:

The United States Food and Drug Administration. Title 21 Code of Federal Regulations Part 58 Regulations Part 58.

The United States Environmental Protection Agency (FIFRA). Title 40 Code of Federal Regulations Part 160.

Study Director United the little of the boundary of this location of the land of this document nay the efore be prohibited and of this document may the efore be prohibited and of this document may the efore be prohibited and of this document may the efore be prohibited and of this document may the efore be prohibited and of this document may be a supplied to the prohibited and of this document may be a supplied to the prohibited and of this document may be a supplied to the prohibited and of this document may be a supplied to the prohibited and of the proh The United States Environmental Protection Agency (TSCA). Title 40 Code of

Inq.

Date: 30/06/1995

QUALITY ASSURANCE STATEMENT

NOTOX B.V., 's-Hertogenbosch, The Netherlands.

Study procedures were subject to periodic inspections and general non study specific processes were also inspected at periodic intervals.

This report was audited by the NOTOX Quality Assurance Unit and the methods and results accurately reflect the raw data.

DATES OF QAU INSPECTIONS/ AUDITS	REPORTING DATES
AUDITS 10-03-1995 27-04-1995 29-06-1995	10-03-1995 27-04-1995 29-06-1995

Quality Assurance Manager

Date: 50 -6-95

REPORT APPROVAL

STUDY DIRECTOR:	Ing.
	Ing. Date: 30/06/1995 Dr. Technical Director
MANAGEMENT:	Dr. Technical Director
ESP SUDIE	
It is not the brokethy any bullication of this document the brokethy distribution of this document the bull of the bull of this document the bull of the bull	

SUMMARY

This report describes the effect of GLYFOSAAT on the induction of chromosome aberrations in cultured peripheral human lymphocytes in the presence and absence of a metabolic activation system (Aroclor-1254 induced rat liver S9mix).

In the absence of S9-mix GLYFOSAAT was tested up to 237 µg/ml for a 24 h and 48 h fixation time in the first experiment. In the second experiment GLYFOSAAT was tested up to 333 µg/ml for a 24 h fixation time. In the presence of 1.8% (v/v) S9-fraction GLYFOSAAT was tested up to 562 μg/ml for a 24 h and 48 h fixation time in the first experiment. In the second experiment GLYFOSAAT was tested up to 562 µg/ml for a 24 h fixation time.

None of the tested concentrations induced a statistically and biologically significant increase in the number of cells with chromosome aberrations, neither in the absence nor in the presence of \$9-mix.

Positive control chemicals, mitomycin C and cyclophosphamide, both produced a in to test co J-mix) functions described in the clast cions described in the control of the double of the control of the contr statistically significant increase in the incidence of cells with chromosome aberrations, indicating that the test conditions were adequate and that the metabolic activation system (S9-mix) functioned properly.

It is concluded that GLYFOSAAT is not clastogenic in human lymphocytes under the experimental conditions described in this report.

NOTOX Project 141918

GLYFOSAAT

PREFACE

Agrichem B.V. Sponsor

P.O. Box 295

4900 AG OOSTERHOUT The Netherlands

Study Monitor

Testing Facility

Study Director

Technical Head

Start : 15 March 1995
Completed : 28 May 1995
YFOSAAT Study Plan

TEST SUBSTANCE

GLYFOSAAT White powder 22021 Identification Description

Batch Purity

rage At room temperature in the dark orage Stable Ol January test substance storage
Stability under Stability under storage conditions

Expiry date &

Stable 01 Jan Dime+ Stable for at least 4 hours in vehicle Dimethylsulphoxide: not indicated

The sponsor is responsible for the completeness and GLP Compliance of all test substance datas

VEHICLES

The test substance was suspended in dimethylsulphoxide (DMSO) of spectroscopic quality (Merck). Test substance concentrations were prepared directly prior to

The final concentration of the solvent in the culture medium amounted to 0.9 % (v/v).

GUIDELINES

The study procedures described in this report were based on the following guidelines:

- Organisation for Economic Co-operation and Development (OECD), OECD Guidelines for Testing of Chemicals, Guideline no. 473: "Genetic Toxicology: In Vitro Mammalian Cytogenetic Test", (adopted May 26,
- European Economic Community (EEC), Directive 92/69/EEC. Annex V of the EEC Directive 67/548/EEC, Part B: Methods for the Determination of Toxicity; B.10: "Other Effects-Mutagenicity: In Vitro Mammalian Cytogenetic Test". EEC Publication no. L383 (adopted December, 1992).

ARCHIVING

NOTOX B.V. will archive the protocol, report, test article reference sample, all specimens and raw data for at least 10 years.

OBJECTIVE

Purpose of the study

The objective of this study was to evaluate the test substance for its ability to induce structural chromosome aberrations in cultured human lymphocytes, either in the presence or absence of a metabolic system (S9-mix).

Justification and rationale of the test system

Stimulated cultured human lymphocytes were used because they are sensitive indicators of clastogenic activity of a broad range of chemical classes. In combination with a mammalian metabolizing system (S9-mix) also indirect chemical mutagens, i.e. those requiring metabolic transformation into reactive intermediates, could be tested for clastogenic effects in vitro. Following treatment, cell division was arrested in the metaphase stage of the cell cycle by addition of the spindle poison colchicine. Structural chromosome changes such as breaks, gaps, minutes, dicentrics and exchange figures were examined microscopically in cultures treated with the test substance and the results were compared with those of the control (vehicle-treated) cultures. Chromosome aberrations were generally evaluated in the first post-treatment mitosis. The appearance of the first post-treatment mitosis could be considerably delayed, due to toxic insult of the cells. Therefore, cells were harvested at 24 h and 48 h after beginning of treatment to cover the interval in which maximum aberration frequency was expected. A test article which induced a positive response in this assay was presumed to

be a potential mammalian cell clastogenic agent.

MATERIALS AND METHODS

TEST SYSTEM

Test System Cultured peripheral human lymphocytes

Rationale Recognized by the international guidelines as the

recommended test system (e.g. EPA, OECD, EEC).

Source Healthy adult male volunteers

pilot study : age 35, AGT = 15.0 h (Dec. 1994) experiment 1: age 28, AGT = 15.0 h (Dec. 1994) experiment 2: age 28, AGT = 14.9 h (Dec. 1994) (AGT= Average Generation Time of the cells)

CELL CULTURE

Blood samples

Blood samples were taken from a healthy adult male volunteer by venapuncture using the Venoject multiple sample blood collecting system with a suitable size sterile vessel containing sodium heparin. The blood samples were stored at a temperature between 4 and 25°C.

Within 4 h after withdrawal lymphocyte cultures were started.

F10 complete culture medium

F10 complete culture medium consisted of Ham's F10 medium without thymidine and hypoxanthine (Gibco), supplemented with 20% (v/v) heatinactivated (56°C; 30 min) foetal calf serum (Gibco), L-glutamine (2 mM), penicillin/streptomycin (50 U/ml and 50 μ g/ml respectively), sodium bicarbonate (1.2 g/l) and 30 U/ml heparin.

THIS HOUTHER CELL CULTURE CONDITIONS

Whole blood was cultured in F10 complete culture medium with Phytohaemagglutinin (Murex).

Per culture (5 ml F10 complete culture medium and 0.4 ml whole blood) 0.1 ml (9 mg/ml) Phytohaemagglutinin was added.

Environmental conditions

All incubations were carried out in a humid atmosphere (80-95%) containing 5% $\rm CO_2$ in air in the dark at 37°C. The temperature, humidity and $\rm CO_2$ -percentage were monitored during the experiment.

REFERENCE SUBSTANCES

Negative control:

The vehicle of the test article, being dimethylsulphoxide (DMSO).

Positive controls:

Solvent for reference substances

Hank's Balanced Salt Solution (HBSS) without calcium and magnesium.

Without metabolic activation (-S9-mix):

Mitomycin C (MMC-C; CAS no. 50-07-7, Sigma, U.S.A.) was used as a direct acting mutagen at a final concentration of 0.2 μ g/ml (solvent: HBSS) for a 24 h treatment period and 0.1 μ g/ml (solvent: HBSS) for a 48 h treatment period.

With metabolic activation (+S9-mix):

Cyclophosphamide (CP; CAS no. 50-18-0. Endoxan-Asta, Asta-Werke, F.R.G.) was used as an indirect acting mutagen, requiring metabolic activation, at a final concentration of 15 μ g/ml (solvent: HBSS) for a 3 h treatment period (24 h fixation time).

METABOLIC ACTIVATION SYSTEM

Preparation of S9-homogenate;

Rat liver microsomal enzymes were routinely prepared from adult male Wistar rats, which were obtained from BRL, Switzerland, for the dose range finding test and the first experiment and for the second experiment adult male Wistar rats, were obtained from Charles River Wiga, Sulzfeld, Germany.

The animals were housed at NOTOX in a special room under standard laboratory conditions, as described in the SOP's. The rats were injected intraperitoneally with a solution (20% w/v) of Aroclor 1254 (500 mg/kg body weight) in corn oil. Five days later, they were killed by decapitation; (they were denied access to food for at least 12 hours preceding sacrifice). The livers of the rats were removed aseptically, and washed in cold (0°C) sterile 0.1 M sodium phosphate buffer (pH 7.4) containing 0.1 mM Na_2-EDTA. Subsequently the livers were minced in a blender and homogenized in 3 volumes of phosphate buffer with a Potter homogenizer. The homogenate was centrifuged for 15 min at 9000 g. The supernatant (S9) was transferred into sterile ampules, which were stored in liquid nitrogen (-196°C).

Preparation of S9-mix:

S9-mix was prepared immediately before use and kept on ice during the test. S9-mix contained per ml: 1.02 mg MgCl $_2$.6H $_2$ O; 2.46 mg KCl; 1.7 mg glucose-6-phosphate; 3.4 mg NADP; 4 µmol HEPES and 0.5 ml S9-fraction. 0.5 ml S9-fraction was added to 0.5 ml filter (0.22 µm)-sterilized S9-mix components (50% v/v S9-fraction).

The S9-batch used in the dose range finding test was no. 94-6 (final concentration of Cytochrome P-450 in the S9-mix was 22.3 nmol/ml). The S9-batch used in experiment 1 was no. 94-7 (final concentration of Cytochrome P-450 in the S9-mix was 23.6 nmol/ml). The S9-batch used in experiment 2 was no. 95-1 (final concentration of Cytochrome P-450 in the S9-mix was 25.9 nmol/ml).

Metabolic activation was achieved by adding 0.2 ml liver S9-mix to 5.3 ml exposition medium (4.8 ml F10 complete culture medium, 0.4 ml blood and 0.1 ml (9 mg/ml) Phytohaemagglutinin). The concentration of the S9-fraction in the exposition medium was 1.8% (v/v).

EXPERIMENTAL PROCEDURE

Dose range finding test

In order to obtain the appropriate dose levels for the chromosome aberration test a dose range finding test was performed. The test substance was tested in the absence of S9-mix and in the presence of S9-mix.

Lymphocyte cultures (0.4 ml blood of a healthy male donor was added to 5 ml culture medium and 0.1 ml (9 mg/ml) Phytohaemagglutinin) were cultured for 48 h and thereafter exposed to selected doses of the test substance for 24 h and 48 h without S9-mix or for 3 h with S9-mix.

The highest concentration was determined by the solubility of the test substance in the culture medium.

After 3 h treatment, the cells exposed to the test substance in the presence of S9-mix were rinsed once with 5 ml of HBSS and incubated in 5 ml culture medium for another 20-22 h (24 h fixation time). The cells which were treated for 24 h and 48 h in the absence of S9-mix were not rinsed after treatment but were worked up immediately after 24 h and 48 h (24 h and 48 h fixation time).

During the last 3 h of the culture period, cell division was arrested by addition of the spindle inhibitor colchicine (0.5 μ g/ml medium). Thereafter the cell cultures were centrifuged for 5 min at 1300 rpm (150 g) and the supernatant was removed. Cells in the remaining cell pellet were swollen by a 5 min treatment with hypotonic 0.56% (w/v) potassium chloride solution at 37°C. After hypotonic treatment, cells were fixed with 3 changes of methanol: acetic acid fixative (3:1 v/v). Slides were prepared and the mitotic index of each culture was determined by counting the number of metaphases per 1000 cells.

Based on the results of the dose range finding test an appropriate range of dose levels was chosen for the cytogenetic assay.

Cytogenetic assay

The test is carried out with minor modifications as described by Evans (1984).

The test substance was tested in the absence of S9-mix and in the presence of S9-mix in duplicate in two independent experiments.

Lymphocyte cultures (0.4 ml blood of a healthy male donor was added to 5 ml culture medium and 0.1 ml (9 mg/ml) Phytohaemagglutinin) were cultured for 48 h and thereafter exposed in duplicate to selected doses of the test substance for 24 h and 48 h without S9-mix or for 3 h with S9-mix.

After 3 h treatment, the cells exposed to the test substance in the presence of S9-mix were rinsed once with 5 ml of HBSS and incubated in 5 ml culture medium for another 20-22 h (24 h fixation time) or for 44-46 h (48 h fixation time).

The cells which were treated for 24 h and 48 h in the absence of S9-mix were not rinsed after treatment but were worked up immediately after 24 h and 48 h (24 h and 48 h fixation time).

During the last 3 h of the culture period, cell division was arrested by addition of the spindle inhibitor colchicine (0.5 μ g/ml medium). Thereafter the cell cultures were centrifuged for 5 min at 1300 rpm (150 g) and the supernatant was removed. Cells in the remaining cell pellet were swollen by a 5 min treatment with hypotonic 0.56% (w/v) potassium chloride solution at 37°C. After hypotonic treatment, cells were fixed with 3 changes of methanol: acetic acid fixative (3:1 ν/ν).

Based on the mitotic index of the dose range finding test and the first experiment, appropriate dose levels were chosen for the second experiment. For the independent repeat the 24 h fixation time is needed only.

Preparation of slides

Fixed cells were dropped onto slides which were immersed for 24 hours in a 1:1 mixture of 96% (v/v) ethanol/ether and cleaned with a tissue. The slides were marked with the NOTOX study identification number and group number. Two slides were prepared per culture. Slides were allowed to dry and thereafter stained for 10-30 min with 5% (v/v) Giemsa solution in tap water. Thereafter slides were rinsed in tap-water and allowed to dry. The dry slides were cleared by dipping them in xylene before they were embedded in DePeX and mounted with a coverslip.

Mitotic index/dose selection for scoring of the cytogenetic assay

The mitotic index of each culture was determined by counting the number of metaphases per 1000 cells. For the first fixation time (24 h harvest) chromosomes of metaphase spreads were analysed of those cultures with an inhibition of the mitotic index of about 50% or greater whereas the mitotic index of the lowest dose level was approximately the same as the solvent control. Also cultures treated with an intermediate dose were examined for chromosome aberrations. For the second fixation time (48 h harvest) one appropriate dose level was selected for scoring of chromosome aberrations.

Analysis of slides for chromosome aberrations

To prevent bias, all slides were randomly coded before examination of chromosome aberrations and scored. An adhesive label with NOTOX study identification number and code was stuck over the marked slide. At least 100 metaphase chromosome spreads per culture were examined by light microscopy for chromosome aberrations. In case the number of aberrant cells, gaps excluded, was ≥ 25 in 50 metaphases no more metaphases were examined. Only metaphases containing 46 chromosomes were analysed. The number of cells with aberrations and the number of aberrations were calculated.

ACCEPTABILITY OF ASSAY

A chromosome aberration test was considered acceptable if it met the following criteria:

a) The numbers of chromosome aberrations found in the solvent control cultures should reasonably be within the laboratory historical control data range.

b) The positive control substances should produce a statistically significant (Chi-square test, P < 0.05) increase in the number of cells with chromosome aberrations.

DATA EVALUATION AND STATISTICAL PROCEDURES

A test substance was considered positive (clastogenic) in the chromosome aberration test if:

- a) It induced a dose-related statistically significant (Chi-square test, P < 0.05) increase in the number of cells with chromosome aberrations.
- b) A statistically significant increase in the frequency of aberrations was observed in the absence of a clear dose-response relationship.

A test substance was considered negative (not clastogenic) in the chromosome aberration test if:

 a) None of the tested concentrations induced a statistically significant (Chi-square test, P < 0.05) increase in the number of cells with chromosome aberrations.

The preceding criteria were not absolute and other modifying factors might enter into the final evaluation decision.

The incidence of aberrant cells (cells with one or more chromosome aberrations, inclusive or exclusive gaps) for each treatment group was compared to that of the solvent control using Chi-square statistics:

$$X^2 = \frac{(N-1) \times (ad-bc)^2}{(a+b) (c+d) (a+c) (b+d)}$$

where b = the total number of aberrant cells in the control cultures.

d = the total number of nonaberrant cells in the control cultures.

 n_0 = the total number of cells scored in the control cultures.

a = the total number of aberrant cells in treated cultures to be compared with the control.

c = the total number of nonaberrant cells in treated cultures to be compared with the control.

 n_1 = the total number of cells scored in the treated cultures.

 $\bar{N} = \text{sum of } n_0 \text{ and } n_1$

$$\vec{N} = \text{sum of } n_0 \text{ and } n_1$$

$$| \vec{N} = \vec{N} | \vec{N} |$$

is small (P< 0.05) the hypothesis that the incidence of cells with chromosome aberrations is the same for both the treated and the solvent control group is rejected and the number of aberrant cells in the test group is considered to be significantly different from the control group at the 95% confidence level.

RESULTS

Dose range finding test

At a concentration of 1000 $\mu g/ml$ GLYFOSAAT precipitated in the culture medium. Therefore, a concentration of 1000 $\mu g/ml$ was used as the highest concentration of GLYFOSAAT.

In the dose range finding test blood cultures were treated with 10, 33, 100, 333 and 1000 μ g/ml culture medium with and without S9-mix (Table 1).

TABLE 1 MITOTIC INDEX OF DONOR CULTURES TREATED WITH VARIOUS CONCENTRATIONS
OF GLYFOSAAT
DOSE RANGE FINDING TEST

Test substance concentration (µg/ml)	Number of Absolute	metaphases per 1000 cells Percentage of control
Without metabolic activation (-S9-mix) ci 308 d	ar ar ar ar
Test substance concentration (µg/ml) Without metabolic activation (-S9-mix) 24 h fixation time Controla) 10 33 1000 333 1000b) 48 h fixation time Controla) 10 33 100 333 1000 333 1000c 334 1000c 335 1000c 345 24 h fixation time Controla) 25 h fixation time Controla)	36 27 32 25 0	100 75 89 69 0
48 h fixation time Control ^a) 10 33 100 333 1000 ^b)	44 40 31 28 15 0	100 91 70 64 34 0
With metabolic activation (+S9-mix) 24 h fixation time Controla) 10 33 100 333 1000b)	63 68 61 55 12 58	100 108 97 87 19 92

a) DMSO

b) GLYFOSAAT precipitated in the exposition medium

Further investigation showed that a concentration of 562 μg/ml GLYFOSAAT already precipitated in the F1O complete culture medium. Therefore, this dose was selected as higesht dose in the presence of S9-mix, all other dose groups did not precipitate in the F10 complete culture medium.

Based on the results of the dose range finding test the following dose levels were selected for the chromosome aberration test:

Experiment 1

: 33, 56, 100, 133, 178 and 237 $\mu g/ml$ culture medium Without S9-mix

(24 h fixation time)

56, 100, 133, 178, 237 and 333 μg/ml culture medium

(48 h fixation time)

: 33, 100, 133, 178, 237, 333 and 562 µg/ml culture medium With S9-mix

(24 h fixation time)

100, 133, 178, 237, 333 and 562 µg/ml culture medium

(48 h fixation time)

Table 2 shows the mitotic index of cultures (from blood of a healthy male donor) treated with various test substance concentrations or with the positive or negative control substances.

Based on these observations the following doses were selected for scoring of chromosome aberrations:

: 33, 100 and 237 µg/ml culture medium Without S9-mix

(24 h fixation time)

237 µg/ml (48 h fixation time)

With S9-mix : 237, 333 and 562 ug/ml culture medium

(24 h fixation time)

562 μ g/ml (48 h fixation time).

The data of the dose range finding test and the first cytogenetic assay were used to determine the dose levels for the second cytogenetic assay.

Experiment 2

Without S9-mix $^{\circ}$: 33, 100, 133, 178, 237 and 333 $\mu g/ml$ culture medium

(24 h fixation time)

100, 333, 422 and 562 μg/ml culture medium With S9-mix 🔿

(24 h fixation time)

Table 3 shows the mitotic index of cultures (from blood of a healthy male donor) treated with various test substance concentrations or with the positive or negative control substances.

Based on these observations the following doses were selected for scoring of chromosome aberrations:

NOTOX Project 141918

Without S9-mix : 33, 237 and 333 μ g/ml culture medium

(24 h fixation time)

With S9-mix : 333, 422 and 562 μg/ml culture medium

(24 h fixation time)

Cytogenetic assay

The ability of GLYFOSAAT to induce chromosome aberrations in human peripheral lymphocytes was investigated. The test was carried out in duplicate in two independent experiments. The results of duplicate cultures are indicated by A and B. The scores for the numbers of aberrant cells (inclusive and exclusive gaps) and the numbers of the various types of chromosome aberrations at the various concentrations of the test substance are presented in Tables 4-9. The criteria according to which the aberrations were classified are outlined in Appendix 1.

Both in the absence and presence of S9-mix GLYFOSAAT did not induce a statistically and biologically significant increase in the number of cells with chromosome aberrations.

The number of cells with chromosome aberrations found in the solvent control cultures were within the laboratory historical control data range {i.e. 1.0 ± 1.1 (mean \pm standard deviation) aberrant cells per 100 metaphases (without S9-mix; gaps excluded) and 0.8 ± 0.9 aberrant cells per 100 metaphases (with S9-mix; gaps excluded)}. The positive control chemicals (MMC-C and CP) both produced statistically significant increases in the frequency of aberrant cells. It was therefore concluded that the test conditions were appropriate and that the metabolic activation system (S9-mix) functioned properly.

Finally, it is concluded that this test should be considered valid and that GLYFOSAAT is not clastogenic under the experimental conditions of this test.

TABLE 2 MITOTIC INDEX OF DONOR CULTURES TREATED WITH VARIOUS CONCENTRATIONS OF GLYFOSAAT Experiment 1

Test substance	Number of metap	hases per 1000 cells b)
	<u> </u>	D
		~~~
concentration (μg/ml)  Without metabolic activation (-S9-mix) 24 h fixation time Controla) 33 56 100 133 178 237 MMC-C; 0.2 μg/ml  48 h fixation time Controla) 56 100 133 178 237 333 MMC-C; 0.1 μg/ml		100 100 96 87 78 38
Without metabolic activation (-S9-mix)		1150
24 h fixation time		Control Control
Control ^a )	27 - 18	100
33	26 - 17	5° 6 96 110°
56	17 - 22	S 10 87 10 10 10 10 10 10 10 10 10 10 10 10 10
100	19 - 16	20, 78
133	12 - 5	38
178	9 - 10	42 .
237	9 - 12	10 AX
MMC-C; 0.2 μg/ml	10 - 10 0	ON WILE 44
<u>-</u>	10 131 2P1 31	
48 h fixation time	"O' O' STON STON STON	ALL AS
Control ^a )	20 34	100
56	36° - 45 0 60° 0	150
100	28 - 26	100
133	20 - 23	80
178	20 - 29	91
237	19 + 16	₆₅ d)
333	8 - 21	54
MMC-C; 0.1 μg/ml	25 - 20	83
	<u>.</u>	
With metabolic activation (+S9-mix)	6,	
24 h fixation time		
Controla)	46 - 37	100
33 (F Shinis Will Me)	66 - 49	139
100	49 - 42	110
133	66 - 43	131
178	44 - 44	106
237 O'C', (18) 141 11 11 11 11 11 11 11 11 11 11 11 11	44 - 40	101
333 10 70 10 0 00	38 - 36	89
5629)	33 - 13	55
CP; 15 µg/ml	15 - 12	33
Lit. City		
48 h fixation time		
Control ^a )	52 - 55	100
100	66 - 63	121
133	74 - 69	134
178	60 - 67	119
237	66 - 67	124
333	62 - 68	121
562 ^c )	62 - 67	121

a) DMS0

b) duplicate cultures

c) GLYFOSAAT precipitated in the exposition medium

d) This concentration was selected for scoring of chromosome aberrations because it showed a clear indication of cytotoxicity at the 24 h fixation period (mitotic index was reduced by 53%).

TABLE 3 MITOTIC INDEX OF DONOR CULTURES TREATED WITH VARIOUS CONCENTRATIONS OF GLYFOSAAT Experiment 2

	Number of metap	
concentration	Absolute	Percentage
(μg/ml)		of control
Without metabolic activation (-S9	-mix)	565 100 84 NOT AND 156 156 156 156 156 156 156 156 156 156
24 h fixation time		docuties, and
Controla)	40 27	To a solution of the solution
23	21 24	25° 10110 100
100	22 - 26	· 60 · 60 · 60 · 60 · 60 · 60 · 60 · 60
133	22 - 20	its diff 68
178	20 - 17	18
237	21 - 26 0	101 10 1 40 01.
227	16 - 10	Million 31
MMC-C: U 3 Ma/m]	15 2 18 7 7	0 0 10 13
μης-ς, σ.2 μg/ιιί	12/18/18/19/19/	the of 45
With metabolic activation (+S9-mi	x) steen platoling sion	S
	The stills of his list this soil	•
24 h fixation time	9/1/60 3/0 2/0/ 00/ 1/3/	
Control ^a )	64 - 59	100
100	56 3 61	95
333	60 - 35	93
422	44 52	78
562 ^C )	53 - 52	85
CP; 15 μg/ml	21 - 23	36
	, (C)	
	<b>⊘`</b>	
a) DMSO		
a) DMSO b) duplicate cultures		
<ul><li>a) DMSO</li><li>b) duplicate cultures</li><li>c) GLYFOSAAT precipitated in the</li></ul>	exposition medium	
Concentration (μg/ml)  Without metabolic activation (-S9  24 h fixation time Controla) 33 100 133 178 237 333 MMC-C; 0.2 μg/ml  With metabolic activation (+S9-mi)  24 h fixation time Controla) 100 333 422 562c) CP; 15 μg/ml  a) DMS0 b) duplicate cultures c) GLYFOSAAT precipitated in the	exposition medium	
<ul><li>a) DMSO</li><li>b) duplicate cultures</li><li>c) GLYFOSAAT precipitated in the</li></ul>	exposition medium	
a) DMSO b) duplicate cultures c) GLYFOSAAT precipitated in the	exposition medium	
a) DMSO b) duplicate cultures c) GLYFOSAAT precipitated in the	exposition medium	
a) DMSO b) duplicate cultures c) GLYFOSAAT precipitated in the	exposition medium	
a) DMSO b) duplicate cultures c) GLYFOSAAT precipitated in the	exposition medium	
a) DMSO b) duplicate cultures c) GLYFOSAAT precipitated in the	exposition medium	
a) DMSO b) duplicate cultures c) GLYFOSAAT precipitated in the	exposition medium	
a) DMSO b) duplicate cultures c) GLYFOSAAT precipitated in the	exposition medium	
24 h fixation time Controla) 33 100 133 178 237 333 MMC-C; 0.2 μg/ml  With metabolic activation (+S9-mi) 24 h fixation time Controla) 100 333 422 562c) CP; 15 μg/ml  a) DMSO b) duplicate cultures c) GLYFOSAAT precipitated in the	exposition medium	

TABLE 4 CHROMOSOME ABERRATIONS IN DONOR CULTURES TREATED WITH VARIOUS CONCENTRATIONS OF GLYFOSAAT (Without S9-mix)a) 24 h fixation time Experiment 1

Conc μg/ml	DMS0 (0.9	1 1% v/	v)	33 μg/π	n1		100 μg/			237 μg/m	1		MMC- 0.2		m1	
Culture	Α	В	A+8	А	В	A+B	А	В	A+B	A	В	A+B		8	A+8	unde.
No. of cells scored	100	100	200	100	100	200	100	100	200	100	100	200	100	100	200	odocuments under EUV
No. of cells with aberrations (+ gaps)	2	2	4	2	2	4	1	1	2	2	3	5	38	33	5071 71 50	and use the state of the state
No. of cells with aberrations (- gaps)	2	1	3	1	1	2	1	0	1	2	1	onis s	535 O110	1,10 23	50	of its owner.
g'		1			1			1		×	S 2	9	37	જો	ille,	OFFICE
g"				1					0 يئ		000	240		o 010	. ~~	
b'								2	N C	JO 20	NO.	Shill	NIS 6	e Yi		
b#				2	1		. 1	10,0	ille,	0.	77/2	e 90.	91	8		
m'	2	1				٤٥	0	25	11,00	1910,	ji	3170	3			
m"					i,	sec.	70,	601	1000	sill.	.jic	,				
exch.				. Ga	3,0,5	ON'S	100	2017	ient.	ó _{lol,}			8	7		
dic				6	,,0	Tille.	190	2 CO.	.e							
ď,		,	PC		900	JiiO	O()	2/8/0	,							
misc.	2po1	XSY	oe doi	p pol	S ^{ill} e	nda oly	97,11			poly	,	р	int	ca		
total aberr (+ gaps)	Wer!	Jiji 2	Jil Caj	N IT A	CUZ	SK	1	1		2	3		46	47		
total aberr (- gaps)  a) Abbreviat appendix polyploic misc. = ( *) Significa	2	7 2	× 1/2	3	1		1	0		2	1		29	26		

misc. = (miscellaneous) aberrations not belonging to the ones mentioned above.

*) Significantly different from control group (Chi-square test),

* P < 0.05, ** P < 0.01 or *** P < 0.001.

CHROMOSOME ABERRATIONS IN DONOR CULTURES TREATED WITH VARIOUS TABLE 5 CONCENTRATIONS OF GLYFOSAAT (With S9-mix)a) 24 h fixation time Experiment 1

		J														_
Conc µg/ml	DMS(	3 9% v	/v)	237 µg/1	nl		333 µg/1	n1		562 μg/π	11		CP 15 1	rā\w	l.	
Culture	А	В	A+B	А	8	A+B	А	В	A+B	A	В	A+B	А	В	A+B	*5
No. of cells scored	100	100	200	100	100	200	100	100	200	100	100	200	100	100	200	odocunents
No. of cells with aberrations (+ gaps)	1	5	6	2	0	2	2	1	3	1	3		1	<b>32</b>	89	ine exploits
No. of cells with aberrations (- gaps)	1	3	4	0	0	0	1	1	. 2	1	3	;i018	37	1016	23 23 30	control of the state of the sta
g'		1		2			1			_4(	) Sille	stal s	22	13	311/2	(50)
g"		1							Q.	ec,	6,0	ion	)21	913		
b'		1					1		الل	Silve (	301/	Jish	25	10		
b "		1					ä	ille	Light S	50	2	ne ?	23	2		
m '		1				2	O'S	000	Jille	SUCI	OUL	100				
m"	1				, ,	ige	3	27,	cijo!	SAL	iloji	,				
exch.					9	101	11.11	100	riel	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1		6	4		] .
dic			-	0,0	Č.	CILL	10	16	0,0							
ď'		4		2/0	150	Dille	1,0	CE 1								
misc.	eit	) 60	Jyni Jyni	6.	9182	curi	pol	у р	oly	4eni	p do e	oly ndo	pol	y m	a	
total aberr		( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	Jiblic (	0,1			2	1		3	4		97	53		
total aberr (- gaps)	27	any 3	, S	ilis o			1	1		2	4		54	27		

a) Abbreviations used for various types of aberrations are listed in appendix 1. The numerical variations endoreduplication (endo) and polyploidy (poly) were not counted as an atmiss. = (miscellaneous) misc.= (miscellaneous) aberrations not belonging to the ones mentioned above.

^{*)} Significantly different from control group (Chi-square test), * P < 0.05, ** P < 0.01 or *** P < 0.001.

48	ONC 8 h	ENTI fi:	OME RATI xati ent	ONS on	OF	GL'	NS I YFOS	N D	ON (
Conc µg/ml	DMS	0 9% v	/v)	237 µg/1	ml		MMC -	.C μg/m	11
Culture	Α	В	A+B	А	В	A+B	A	В	A+B
No. of cells scored	100	100	200	100	100	200	100	100	200
No. of cells with aberrations (+ gaps)	1	3	4	o	1	1	36	45	*** 81
No. of cells with aberrations (- gaps)	1	0	1	0	0	0	32	35	UNUK (Wi
g'		2	:		1		16	12	
g"		1					5	9	
b'						,,,,,,,,	9	(O)6	ellec
b"						ر د (	24	617	ilge.
m '					, i	ded)	Picy,	(3)	101, 12 71, 12
m "	2				0,07	OUIS	LUC	91110	en'is
exch.	_			19/2	10	JIU6,	(8)	<u> </u>	
dic	_	-/-	SP	7018	300		02	ક કુંહોં	)~
<u>d'</u>		<u>(</u> (()	100		istill	mei	27:11		
misc.	eid	1,100		pol	\$ 400 2000	entin		e r	ndo
total aberr (+ gaps)	2	91. 'n,	1011-	50			64	6:	2
total aberr (- gaps)	14.3	)-	O,	0	0	ı	43	4.	1

a) Abbreviations used for various types of aberrations are listed in appendix 1. The numerical variations endoreduplication (endo) and polyploidy (poly) were not counted as an aberration. misc. = (miscellaneous) aberrations not belonging to the ones mentioned

^{*)} Significantly different from control group (Chi-square test), * P < 0.05, ** P < 0.01 or *** P < 0.001.

TABLE 7 CHROMOSOME ABERRATIONS IN DONOR CULTURES TREATED WITH VARIOUS CONCENTRATIONS OF GLYFOSAAT (With S9-mix)a) 48 h fixation time Experiment 1

4	0NC 8 h	ENT	RA7	TIO tio	INS In	RRA OF	TI G e	ON LY
Conc ug/ml	DMS			5	562 1g/			_
Culture	А	В	Α+	-в А	١	В	A+	В
No. of cells scored	100	100	20	100	100	100	20	0
No. of cells with aberrations (+ gaps)		1 (	0	1	0	-		0
No. of cells with aberrations (- gaps)	(	) נ	0	a	0		20	B 0 0 0
g'		L						_
g"								_
b'								
b*								_
m '								2
m"						ć	16/	, 3
exch.					, '(	30/	<i>i10</i>	;
dic				Š	,0	SCY	cy	
ď,		<	, KS	2	777	160	(O)	2
misc.	×	401	24	) (	٥, آ	disi	CV	7
total aberr (+ gaps)	11. 60,				or V	is di	nei	1
total aberr (- gaps)	P	oany	6,	ر ۲	iis O	90-		

Abbreviations used for various types of aberrations are listed in appendix 1. The numerical variations endoreduplication (endo) and polyploidy (poly) were not counted as an aberration. misc. = (miscellaneous) aberrations not belonging to the ones mentioned above.

^{*)} Significantly different from control group (Chi-square test), * P < 0.05, ** P < 0.01 or *** P < 0.001.

TABLE 8 CHROMOSOME ABERRATIONS IN DONOR CULTURES TREATED WITH VARIOUS CONCENTRATIONS OF GLYFOSAAT (Without S9-mix)a) 24 h fixation time Experiment 2

Conc µg/ml	DMS0	) 9% v.	/v)	33 μg/ι	nl		237 µg/r	nl		333 μg/π	n1		MMC -		m1	
Culture	Α	В	A+B	А	В	A+B	A	В	A+8	А	В	A+8	A	В	A+B	Filipor
No. of cells scored	100	100	200	100	100	200	100	100	200	100	100	200	100	100	200	documents under EUY
No. of cells with aberrations (+ gaps)	0	1	1	0	2	2	4	1	5	2	2	4	25	26		City bo
No. of cells with aberrations (- gaps)	0	0	0	0	0	0	3	0	3		1	oriz	25	26	61 61 6	of its owner.
g'		1			2		1	1		,(G		19/9				0
g"									46		70,	24	31.	ر ار	(10)	
ρ,							3	19		P.O.	7/10	SUL	21	2 16		
b#							iii	, il.	iell e	3	62,	e ?	8	7	,	
m'						250	100	35	71/10	191	Jil d	Sille				
m"					j	90°		60.	ion	MIC	Ollo					
exch.				.5	3/0 !	ight.	11.	290	iene	6,0,			2	6	;	
dic			ð	0	, , , , , , , , , , , , , , , , , , ,	JULE	'SX		10,00							
ď,		/<	ole of	101	3:10	Jillo	01	2,61								
misc.	W	-0	100	5 ° C	Sill	Tille	04				en	do				
total aberr (+ gaps)			Jilog Zillio	110	30	enti	4	1		2	2		32	31		
total aberr (- gaps)	0	160	, y	120 120	0		3	0		1	1		31	29	1	

misc. = (miscellaneous) aberrations not belonging to the ones mentioned above.
*) Significantly different from control group (Chi-square test), * P < 0.05, ** P < 0.01 or *** P < 0.001.

TABLE 9 CHROMOSOME ABERRATIONS IN DONOR CULTURES TREATED WITH VARIOUS CONCENTRATIONS OF GLYFOSAAT (With S9-mix)^{a)}
24 h fixation time
Experiment 2

Conc µg/ml	DMS(	) 9% v	/v)	333 µg/1	n1		422 µg/1	n1		562 µg/1	nl		CP 15 1	μg/m.	1
Culture	А	В	A+B	А	В	A+B	А	В	A+B	Α	В	A+B	А	В	A+B
No. of cells scored	100	100	200	100	100	200	100	100	200	100	100	200	100	100	200
No. of cells with aberrations (+ gaps)	3	1	4	3	4	7	2	2	4	1	2	3	26	27	, 53 , 53 , 53 , 53 , 53
No. of cells with aberrations (- gaps)	2	1	3	2	3	5	2	0	2	0	1		26	25	() 55 55 ()
g'	1			1	1			2		1,	0 1	eid	Solo	001	1.11/2
g"									Ç.	(OC)	6,0	ion!	10	SION	.e.;(0)
b'	2	1		2	2		2	9	الن	ĊÜ,	001	diek	27	25	
b"					1		ċ	JIN !	Liel	0,0	10	:10°	1,0	11	
m '						>	lol ;		Jille	310	OUI	705			
m"		•			· ·	ige	SI	97.	cijol	SNI	VID!				
exch.					3010	ightarrow	CI. C	100	lier	0.01	3,		8	7	
dic				200	C.C.	CILL	16		, e					1	
ď,		Z	KSP	37/0	115	Uill	NO.	reie	7						
misc.	35	10/	27/06	pol-	ydisi	CILL	207	C.	•						
total aberr (+ gaps)	30 ES		iselis.	dilor Silor	115 4	neni	2	2		1	2		44	45	
total aberr	P	My Y	511b	0,	300		2	0		0	1	. "	44	44	

Abbreviations used for various types of aberrations are listed in appendix 1. The numerical variations endoreduplication (endo) and polyploidy (poly) were not counted as an aberration.

misc = (miscellaneous) aberrations not belonging to the ones mentioned above.

^{*)} Significantly different from control group (Chi-square test), * P < 0.05, ** P < 0.01 or *** P < 0.001.

#### REFERENCES

- 1) Ames, B.N., McCann, J. and Yamasaki, E., 1975, Methods for detecting carcinogens and mutagens with the Salmonella/mammalian microsome mutagenicity test, Mutation Res., 31, 347-364.
- Evans, H.J., 1984, Human Peripheral Blood Lymphocytes for the Analysis of Chromosome Aberrations in Mutagen Tests. In: Handbook of Mutagenicity Test Procedures, B.J. Kilbey, M. Legator, W. Nichols and C. Ramel eds, 405-427, Elsevier Science Publishers B.V., Amsterdam.
- 3) Evans, H.J. "Cytological methods for detecting chemical mutagens," Chemical mutagens, principles and methods for their detection, Vol. 4, Ed. A. Hollaender (New York, London: Plenum Press, 1976) pp 1-29.
- 4) Howard, P.N., Bloom, A.D., Krooth, R.S. "Chromosomal aberrations induced by N-methyl-N'-nitro-N-nitrosoguanidine in mammalian cells," In Vitro 7:359-365 (1972).
- 5) Ishidate, M. Jr., Odashima, S. "Chromosome tests with 134 compounds on Chinese hamster cells in vitro: A screening for chemical carcinogens," Mutation Research, 48:337-354 (1975).
- 6) Preston, R.J., Au, W., Bender, M.A., Brewen, J.G., Carrano, A.V., Heddle J.A., McFee, A.F., Wolff, S., Wassom J.S., "Mammalian in vivo and in vitro cytogenetic assays: A report of the Gene-tox Program," Mutation Research, 87:143-188 (1981)

APPENDIX 1
DEFINITIONS OF CHROMOSOME ABERRATIONS SCORED IN METAPHASE PORTRAITS

		1,0
Aberration	Abbreviation	Description
Chromatid gap	g'	An achromatic lesion which appears as an unstained region in the chromatid arm, the size of which is equal to or smaller than the width of the chromatid and the apparently "broken" segments of the chromatid arm are in alignment.
Chromosome gap	g"	the chromatid arm are in alignment.  An achromatic lesion which appears as an unstained region in both chromatids at the same position, the size of which is equal to or smaller than the width of the chromatid and the apparently "broken" segments of the chromatids are in alignment.  An achromatic lesion in a chromatid arm, the size of which is larger than the width of the chromatid. The broken segments of the chromatid arm are aligned or unaligned.  An achromatic lesion in both chromatids at the same position, the size of which is larger than the width of the chromatid. The broken segments of the chromatid are aligned or unaligned.  Deleted material at the end of a chromatid arm.  A single, usually circular, part of a chromatid lacking a centromere.  Two, usually circular, parts of a chromatid lacking a centromere.
Chromatid break	b, ding to ding it a	An achromatic lesion in a chromatid arm, the size of which is larger than the width of the chromatid. The broken segments of the chromatid arm are aligned or unaligned.
Chromosome break		An achromatic lesion in a chromatid arm, the size of which is larger than the width of the chromatid. The broken segments of the chromatid arm are aligned or unaligned.  An achromatic lesion in both chromatids at the same position, the size of which is larger than the width of the chromatid. The broken segments of the chromatids are aligned or unaligned.  Deleted material at the end of a chromatid arm.  A single, usually circular, part of a chromatid lacking a centromere.
Chromatid deletion	CUMPAT I	Deleted material at the end of a chromatid arm.
Minute do minis	m'	A single, usually circular, part of a chromatid lacking a centromere.
Double minutes	m"	Two, usually circular, parts of a chromatid lacking a centromere.
Dicentric chromosome	dic	A chromosome containing two centromeres.
Tricentric chromosome	tric	A chromosome containing three centromeres.

## APPENDIX 1 Continued

Aberration	Abbreviation	Description	En lan.
Ring chromosome	r	A ring structure with a	a distinct lume
Exchange figure	exch.	An exchange(s) between chromosomes resulting of a tri- or more-armed	in the formatio
Chromosome intrachange	intra	A chromosome intrachang after rejoining of a le	sion within on
Pulverized chromosomes	р	A fragmented or pulver	ized chromosome
Multiple aberrations	main ^{co} tulle	A metaphase spread continuous of the above mentication (chromatid and chromosolincluded), mais counterations.	caining ten or ioned aberratio ome gaps not ed as 10
Polyploidy	poly of dil as line	A chromosome number that of the normal diploid r	at is a multipl number.
Endoreduplication	endo in rolla de la como la co	A form of polyploidy in centromere connects two of chromatids instead opair.	n which each o or four pairs of the normal o
Pulverized chromosomes  Multiple aberrations  Polyploidy  Endoreduplication	ite gochuselt was Agua		
is porn, College,			

# APPENDIX 2

## STATISTICAL EVALUATION OF TEST RESULTS

STATISTICAL EVALUA	ATION OF T	EST RESUL	TS	M.
Chi-square Test				ONTEG COMPARTS ON
TOTAL NUMBER OF CI		ABERRATIO	NS; TREATMENT/C	ONTROL COMPARISON,
Experiment 1				e to documes. Hon and us
TREATMENT DOSE (µg/ml)	S9-MIX	GAPS	P-VALUE two-sided	DECISION AT 95% CONFIDENCE LEVEL
24 h fixation time	2		o of this	Significant
MMC-C (0.2)	-	+ -	≤0.0004 ≤0.0004	significant significant significant
CP (15)	+ +	[1] +	≤0.0004 ≤0.0004	significant significant
48 h fixation time	<u>e</u>	101 / 35 M	ider don't the and y	
MMC-C (0.1)	- is plouided	Sur Mayner	<0.0004 <0.0004 <0.0004 <0.0004 <0.0004 ≤0.0004	significant significant significant significant significant significant

## Experiment 2

TREATMENT DOSE (µg/ml)	S9-MIX GA	PS P-VALUE two-sided	DECISION AT 95% CONFIDENCE LEVEL
24 h fixation t	ime		
MMC-C (0.2)	- +	≤0.0004	significant
Mesec.	-	≤0.0004	significant
CP (15)	+ +	≤0.0004	significant
	+ -	≤0.0004	significant