Paraquat Dichloride

Paraquat SL (A3879R)
- Acute Toxicity in Beagle Dogs with Toxicokinetic Analysis

Final Report

DATA REQUIREMENT(S): Not Applicable

AUTHOR(S): Ronald G. Lindahl, B.S., L.A.T.
Cindy Swain
Jayne Wright, Ph.D.
Rory Brett
Ken Hollis

STUDY COMPLETION DATE: ISSUE DATE

PERFORMING LABORATORIES: MPI Research, Inc.
54943 North Main Street
Mattawan, Michigan 49071-9399 USA

Syngenta Central Toxicology Laboratory (CTL)
Alderley Park Macclesfield
Cheshire SK10 4TJ UK

CEMAS,
Glendale Park, Fernbank Road,
North Ascot, Berkshire SL5 8JB, UK

LABORATORY PROJECT ID: Report Number: 1390-002
Study Number: 1390-002
Task Number: T010735-06

SPONSOR: Syngenta Crop Protection, Inc.
410 Swing Road
Post Office Box 18300
Greensboro, NC 27419-8300 USA

Report Number: 1390-002
GOOD LABORATORY PRACTICE COMPLIANCE STATEMENT

This nonclinical laboratory study was conducted in accordance with the United States Environmental Protection Agency (EPA), Federal Insecticide, Fungicide and Rodenticide Act (FIFRA), Good Laboratory Practice (GLP) Standards, 40 Code of Federal Regulations (CFR) Part 160. The analytical and pathology phase of the study were conducted according to the current version of the United Kingdom Principles of Good Laboratory Practice (The UK GLP Regulations) and the Organization for Economic Cooperation and Development (OECD) Principles of Good Laboratory Practice (ENV/MC/CHEM(98) 17) as interpreted by Syngenta Central Toxicology Laboratory (CTL) and CEMAS. Protocol deviations are presented in Appendix 16. This report accurately reflects the raw data obtained during the performance of this study.

Ronald G. Lindahl, B.S., L.A.T.
Director, Pharmacokinetics/Toxicokinetics
Study Director

Date

Report Number: 1390-002
FLAGGING STATEMENT

This page intentionally left blank.
QUALITY ASSURANCE STATEMENT

Below are the inspections conducted by the Quality Assurance Department and the dates the inspections were reported to the Study Director and Management.

<table>
<thead>
<tr>
<th>Date(s) of Inspection</th>
<th>Study Phase Inspected</th>
<th>Date(s) Reported to Study Director/Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/30/07</td>
<td>Protocol</td>
<td>1/30/07, 2/13/07</td>
</tr>
<tr>
<td>2/9/07</td>
<td>Test Material Preparation</td>
<td>3/13/07</td>
</tr>
<tr>
<td>2/9/07</td>
<td>Vehicle Dispensation</td>
<td>3/13/07</td>
</tr>
<tr>
<td>2/9/07</td>
<td>Test Material Administration</td>
<td>3/13/07</td>
</tr>
<tr>
<td>3/9/07</td>
<td>Clinical Pathology Operations</td>
<td>3/9/07, 4/6/07</td>
</tr>
<tr>
<td>3/15/07 to 3/16/07</td>
<td>Tissue Trimming</td>
<td>3/16/07, 4/6/07</td>
</tr>
<tr>
<td>3/15/07</td>
<td>Protocol Amendment 1</td>
<td>4/6/07</td>
</tr>
<tr>
<td>4/3/07 to 4/6/07</td>
<td>Data Review</td>
<td>4/6/07</td>
</tr>
<tr>
<td>4/3/07 to 4/6/07</td>
<td>Report Review</td>
<td>4/6/07</td>
</tr>
<tr>
<td>4/12/07 to 4/17/07</td>
<td>Report Review</td>
<td>4/17/07</td>
</tr>
<tr>
<td>8/25/08</td>
<td>Report Review</td>
<td>8/25/08</td>
</tr>
</tbody>
</table>

Jennifer R. Simms, B.A., R.A.I.A.T.
Quality Assurance Research Auditor II

Report Number: 1390-002
GENERAL INFORMATION

Contributors

The following contributed to this report in the capacities indicated:

MPI Research Key Personnel

Chairman & Owner, CEO
William U. Parfet, M.B.A.

President, Chief Operating Officer
William M. Harrison, B.S.

Executive Vice President,
Director of Research
James Laveglia, Ph.D.

Study Director
Ronald G. Lindahl, B.S., L.A.T.
Director, Pharmacokinetics/Toxicokinetics

Senior Study Director

Alternate Contact
Travis L. Devlin, M.S., L.A.T.

Senior Director, Laboratory Operations
Benjie A. Culp, A.L.A.T.
Christine M. Soule, L.A.T.
Project Leader, Toxicology Services

Director, Clinical Laboratory Medicine
Allan G. Manus, D.V.M., M.S., D.A.C.L.A.M.

Director, Clinical Pathology
Jan L. VanSteenhouse, D.V.M., Ph.D., D.A.C.V.P.
Senior Principal Clinical Pathologist
Study Clinical Pathologist

Executive Director, Pathology
Theodore W. Slone, Jr., D.V.M., D.A.C.V.P.
Senior Principal Pathologist
Shelley L. Beazley, D.V.M., D.A.C.V.P.
Study Pathologist

Senior Director, Regulatory Affairs
Mary Ann Scott, B.S.

Report Services
Manager, Report Services
Emily Schrum, B.S.
Report Coordinator Associate, Report Services

Quality Assurance
Katherine Longman, B.S., RQAP-GLP
Manager, Quality Assurance Research
Quality Assurance Research Auditor II

Report Number: 1390-002
Syngenta Key Personnel

Syngenta Study Manager

Jon Akins

Principal Investigators

Principal Investigator, Plasma Analysis
Cindy Swain
J Block
Syngenta Central Toxicology Laboratory
Alderly Park
Macclesfield
Cheshire
SK10 4TJ
England, United Kingdom

Cindy Swain
J Block
Syngenta Central Toxicology Laboratory
Alderly Park
Macclesfield
Cheshire
SK10 4TJ
England, United Kingdom

Principal Investigator, Toxicokinetic Analysis
Rory Brett
CEMAS
Glendale Park
Fernbank Road
North Ascot
Berks
SL5 8JB
England, United Kingdom

Jayne Wright, Ph.D.
Syngenta Central Toxicology Laboratory
Alderly Park
Macclesfield
Cheshire
SK10 4TJ
England, United Kingdom

Jayne Wright, Ph.D.
Syngenta Central Toxicology Laboratory
Alderly Park
Macclesfield
Cheshire
SK10 4TJ
England, United Kingdom

Principal Investigator, Microscopic Tissue Examination

Principal Investigator, Phase Revision

Ken Hollis
Syngenta Central Toxicology Laboratory
Alderly Park
Macclesfield
Cheshire
SK10 4TJ
England, United Kingdom

Ken Hollis
Syngenta Central Toxicology Laboratory
Alderly Park
Macclesfield
Cheshire
SK10 4TJ
England, United Kingdom

Report Number: 1390-002
Study dates

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol Approved by Sponsor</td>
<td>January 8, 2007</td>
</tr>
<tr>
<td>Study Initiation Date (Protocol Signed by Study Director)</td>
<td>January 8, 2007</td>
</tr>
<tr>
<td>Experimental Starting Date</td>
<td>January 9, 2007</td>
</tr>
<tr>
<td>Experimental Start Date</td>
<td>February 9, 2007</td>
</tr>
<tr>
<td>Experimental Termination Date</td>
<td>March 9, 2007</td>
</tr>
<tr>
<td>Experimental Completion Date (Final Data Collection)</td>
<td>TBD</td>
</tr>
<tr>
<td>Draft Report Mail Date</td>
<td>May 1, 2007</td>
</tr>
</tbody>
</table>

Deviations from the guidelines

Not applicable

Retention of samples

All raw data, documentation, records, protocol, reserve samples and the final report generated as a result of this study will be retained at MPI Research, Inc., or an approved archive facility contracted by MPI Research, Inc., for a period of 1 year following completion of the study (final report issue date). All data generated at the laboratory of the Sponsor or CEMAS Berks, England, United Kingdom will be retained at those laboratories according to their company policies. Retention of materials after the time stated above will be subject to future contractual agreements.

A reserve sample from the batch of test article used in this study was collected and archived. Any remaining test article will be shipped to a Sponsor-designated location after completion of the study.

Report Number: 1390-002
This report is being submitted by the following personnel.

Ronald G. Lindahl, B.S., L.A.T.
Director, Pharmacokinetics/Toxicokinetics
Study Director

Report Number: 1390-002
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATEMENTS OF DATA CONFIDENTIALITY CLAIMS</td>
<td>2</td>
</tr>
<tr>
<td>GOOD LABORATORY PRACTICE COMPLIANCE STATEMENT</td>
<td>3</td>
</tr>
<tr>
<td>FLAGGING STATEMENT</td>
<td>4</td>
</tr>
<tr>
<td>QUALITY ASSURANCE STATEMENT</td>
<td>5</td>
</tr>
<tr>
<td>GENERAL INFORMATION</td>
<td>6</td>
</tr>
<tr>
<td>SIGNATURE</td>
<td>9</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>10</td>
</tr>
<tr>
<td>1.0 EXECUTIVE SUMMARY</td>
<td>13</td>
</tr>
<tr>
<td>1.1 Study design</td>
<td>13</td>
</tr>
<tr>
<td>1.2 Results</td>
<td>13</td>
</tr>
<tr>
<td>1.3 Conclusion</td>
<td>14</td>
</tr>
<tr>
<td>2.0 INTRODUCTION</td>
<td>15</td>
</tr>
<tr>
<td>2.1 Objective</td>
<td>15</td>
</tr>
<tr>
<td>2.2 Species selection</td>
<td>15</td>
</tr>
<tr>
<td>2.3 Justification for number of animals on study</td>
<td>15</td>
</tr>
<tr>
<td>3.0 MATERIALS AND METHODS</td>
<td>16</td>
</tr>
<tr>
<td>3.1 Vehicle and test article information</td>
<td>16</td>
</tr>
<tr>
<td>3.1.1 Test article preparation</td>
<td>16</td>
</tr>
<tr>
<td>3.1.2 Analysis of dosing formulations</td>
<td>16</td>
</tr>
<tr>
<td>3.1.3 Reserve sample and test article disposition</td>
<td>16</td>
</tr>
<tr>
<td>3.2 Experimental design</td>
<td>17</td>
</tr>
<tr>
<td>3.2.1 Animal acquisition and acclimation</td>
<td>17</td>
</tr>
<tr>
<td>3.2.2 Randomization, assignment to study and maintenance</td>
<td>17</td>
</tr>
<tr>
<td>3.2.3 Test article administration</td>
<td>18</td>
</tr>
<tr>
<td>3.2.3.1 Justification for route of administration</td>
<td>18</td>
</tr>
<tr>
<td>3.2.3.2 Justification of dose levels</td>
<td>18</td>
</tr>
<tr>
<td>3.2.3.3 Administration</td>
<td>18</td>
</tr>
<tr>
<td>3.3 In-life examinations</td>
<td>19</td>
</tr>
<tr>
<td>3.3.1 Cageside observations</td>
<td>19</td>
</tr>
<tr>
<td>3.3.2 Detailed clinical observations</td>
<td>19</td>
</tr>
<tr>
<td>3.3.3 Body weights</td>
<td>19</td>
</tr>
<tr>
<td>3.3.4 Food consumption</td>
<td>20</td>
</tr>
<tr>
<td>3.3.5 Physical examinations</td>
<td>20</td>
</tr>
</tbody>
</table>

Report Number: 1390-002
APPENDIX 6 Individual Food Consumption Values ... 84
APPENDIX 7 Individual Physical Examination Findings .. 86
APPENDIX 8 Clinical Pathology Interpretation ... 88
APPENDIX 9 Individual Clinical Chemistry Values .. 90
APPENDIX 10 Plasma Report .. 103
APPENDIX 11 Pathology Interpretation .. 195
APPENDIX 12 Tissues and Organs Collected and Preserved .. 197
APPENDIX 13 Individual Animal Data Record: Pathology .. 199
APPENDIX 14 Microscopic Examination Report ... 203
APPENDIX 15 Protocol and Amendments .. 237
APPENDIX 16 Deviations ... 267

Report Number: 1390-002
1.0 EXECUTIVE SUMMARY

1.1 Study design

The primary objective of the study, conducted for Syngenta Crop Protection, Inc., was to determine the minimum lethal dose of a 200 g paraquat ion/L SL formulation (A3879R) to the beagle dog and to describe the underlying paraquat plasma kinetics. This formulation contained a nominal concentration of 200 g/L of paraquat ion and also an emetic component (PP796) present at the nominal concentration of 0.5 g/L. Three treatment groups of four male beagle dogs were administered the test article at dose levels of 43.20, 86.40 and 129.60 mg formulation/kg body weight (equivalent to 8, 16 and 24 mg paraquat ion/kg. The formulation was administered undiluted to all groups once via oral gelatin capsule, at respective dose volumes of 0.04, 0.08 and 0.12 mL formulation/kg. Each dose level was selected based on the outcome of the previous dose.

Observations for mortality, morbidity, injury and the consumption of food and water were conducted at least twice daily for all animals. Clinical observations were conducted, body weights and food consumption were measured and recorded daily beginning in Week 1 (relative to randomization for all animals) and on Days 1-14. Day 1 clinical observations were conducted continuously for the first 4 hours post-dose and at 5, 6, 7 and 12 hours post-dose and daily thereafter. In addition the time to emesis and the approximate volume (small, medium or large), color, consistency, presence of any capsule fragments or gel mass, of emesis or any fecal matter was recorded. Body weights and food consumption were measured and recorded daily. Complete physical examination were conducted pre-test and prior to the terminal necropsy. Blood samples for clinical pathology evaluations were collected from all animals pre-test, 24 hours post-dose and prior to necropsy. Blood samples for determination of the plasma concentrations of paraquat and emetic were collected from all animals at designated time points on Day 1. At study termination, each animal was euthanized and a necropsy examination was conducted. Photographs were taken of any lesions and microscopic examination of the lung, kidney and gastrointestinal tract was conducted. The carcasses were discarded without further evaluation.

1.2 Results

Treatment with a single oral dose of 43.20 and 86.40 mg formulation/kg (8 and 16 mg paraquat ion/kg body weight) was tolerated with all animals surviving until scheduled study termination on Day 15. No definitive paraquat-related effects were seen in clinical chemistry or macroscopic pathology parameters. Emesis, body weight loss and reduced food consumption were noted in these groups in the period immediately after administration. However, these effects were transitory in nature and the animals were returning to a normal condition by study termination.

Following treatment with a single oral dose of 129.60 mg formulation/kg (24 mg paraquat ion/kg body weight), emesis was more frequent and the weight loss and reduction in food consumption were still evident at study termination. In addition, one animal was euthanized in extremis on Day 3 with observations of inappetence, decreased activity, salivation, loss of

Report Number: 1390-002
skin elasticity and skin cold to touch. The outcome in this animal was consistent with high systemic exposure to paraquat, as evidenced by the plasma paraquat 24 hour AUC (Area Under Curve). The terminal blood sample and histopathology results obtained from this dog were consistent with renal failure (demonstrated by clinical pathology and histopathology) and hepatic injury (demonstrated by clinical pathology only). This is also consistent with a high dose of paraquat and was probably the principal cause of the clinical condition of this animal.

Following oral administration of A3879R peak plasma paraquat levels were observed between 30 minutes and 1 hour post-dose. The timing of the peak plasma emetic levels was similar, between 30 minutes and 1 hour post-dose. With increasing doses of the formulation there was a dose-dependent increase in the systemic exposure to paraquat. Mean peak plasma emetic levels were observed at 1 hour post-dose for the lowest dose and at 30 minutes post-dose for the higher doses. The dose of 129.60 mg formulation/kg (equivalent to 24 mg paraquat ion/kg) resulted in the highest systemic exposure of paraquat and emetic.

The lung lesions observed in this study were typical for paraquat exposure.

1.3 Conclusion

A single oral capsule dose of 200 g paraquat ion/L SL formulation (A3879R) was tolerated at the 43.20 and 86.40 mg formulation/kg dose levels (8 and 16 mg paraquat ion/kg). Those effects observed (e.g. emesis) were transitory, and not deleterious in nature. At the highest dose level tested, 129.60 mg formulation/kg (24 mg paraquat ion/kg), one animal was euthanized in extremis with post-mortem findings of moderate tubular degeneration/necrosis and slight congestion and hemorrhage in the lungs. In the surviving animals at this dose, 1, reduction in body weight and food consumption were not resolved by study termination. These data indicate that 129.60 mg A3879R/kg (24 mg paraquat ion/kg) is a minimum lethal dose.

Report Number: 1390-002
2.0 INTRODUCTION

This study was conducted in accordance with Standard Operating Procedures (SOPs) and the protocol as approved by the Sponsor. This study complied with United States Environmental Protection Agency (EPA) Federal Insecticide, Fungicide and Rodenticide Act (FIFRA), Good Laboratory Practice (GLP) Standards, and 40 Code of Federal Regulations (CFR) Part 160. The protocol and amendments are presented in Appendix 15. Procedures pertinent to this study are described in this report.

2.1 Objective

The primary objective of this study, conducted for Syngenta Crop Protection, Inc., was to determine the minimum lethal dose of a 200 g paraquat ion/L SL formulation (A3879R) to the beagle dog and to describe the underlying paraquat plasma kinetics. In addition, this study also described the plasma kinetics of an emetic (PP796) component present in this formulation at a nominal concentration of 0.5 g/L. The emetic plasma kinetics and pathological findings were also determined.

2.2 Species selection

The current state of scientific knowledge does not provide acceptable alternatives, in vitro or otherwise, to the use of live animals to accomplish the purpose of this study. "The development of knowledge necessary for the improvement of the health and well-being of humans as well as other animals requires in vivo experimentation with a wide variety of animal species". "Whole animals are essential in research and testing because they best reflect the dynamic interactions between the various cells, tissues, and organs comprising the human body".

The beagle was selected for use in this study by the Sponsor because the dog possesses a vomit reflex and gastrointestinal tract function similar to that in man, making this an appropriate model for determining the toxicity of a formulation that contains emetic.

2.3 Justification for number of animals on study

This study was designed to use the fewest number of animals possible, consistent with the objective of the study, the scientific needs of the Sponsor, contemporary scientific standards and in consideration of applicable regulatory requirements cited in the protocol. As no major differences were expected between the sexes, males only were used to reduce animal usage.

1 Principles for the Utilization and Care of Vertebrate Animals Used in Testing, Research, and Training, Federal Register, 1985 May 20;50(97).
2 Position Statement on the Use of Animals in Research, NIH Guide. 1993 Feb 26; 22(8).

Report Number: 1390-002
3.0 MATERIALS AND METHODS

3.1 Vehicle and test article information

Pertinent test article receipt information and the Certificate of Analysis are presented in Appendix 1. The test article was dosed as supplied hence no vehicle was used on study.

The Sponsor provided documentation on the strength, purity, composition, stability and other pertinent information for the batch of test article used on study.

3.1.1 Test article preparation

The test article, 200 g paraquat ion/L SL formulation (A3879R), was used as received from the Sponsor and no adjustment was made for purity. Formulation A3879R consists of nominal concentrations of 200 g/L paraquat ion and 0.5 g/L of the emetic component PP796. The test article was administered neat (undiluted). To prepare the dosing formulation for capsule administration, the container of test article was gently inverted six times. 10 mL of the test article was measured using a syringe and transferred into an appropriately sized falcon tube and wrapped in aluminium foil. The test article was stored at ambient temperature, protected from light.

Immediately prior to dosing each animal, the falcon tube was gently inverted six times, and the required volume of the test article was placed into a size 000 gelatin capsule using a positive displacement pipette. The size 000 capsule was placed into a size 12 gelatin capsule. The number of capsules increased to accommodate the volume of test article. Capsules of the test article were prepared once and administered within 2 minutes of encapsulation for each animal. No glass was used during test article preparation due to the propensity of paraquat to adhere to glass.

3.1.2 Analysis of dosing formulations

The test article was a liquid formulation dosed as supplied. The Sponsor provided documentation (presented in Appendix 1) that the test article is a solution, homogeneous and stable for the duration of the study; therefore, no test article analyses were performed at MPI Research, Inc. On each dosing day, following inversion and prior to dispensing into the capsules, a 10 mL reserve sample of the dosing formulation was collected. Samples were collected from the middle of the container using a syringe and placed into polypropylene tubes wrapped in foil. Samples were maintained at ambient temperature at MPI Research, Inc.

3.1.3 Reserve sample and test article disposition

A reserve sample from the batch of test article used in this study was collected and archived. Any remaining test article will be shipped to a Sponsor-designated location after completion of the study.

Report Number: 1390-002
3.2 Experimental design

3.2.1 Animal acquisition and acclimation

Twenty-two male experimentally naïve beagle dogs, approximately 8.5 to 9.5 months of age at receipt, were received from Covance Research Products, Inc., Cumberland, Virginia/USA, on January 9, 2007. During the 31 to 45 day acclimation period, the animals were weighed approximately weekly and were observed twice daily with respect to general health and any signs of disease. All animals were given a detailed physical examination prior to selection for study. Ova and parasite evaluations on stool samples were performed, all results were negative. Results of these evaluations are not reported but are maintained in the study file. All animals had blood samples collected pretest to evaluate clinical chemistry parameters. Prior to study start, the dogs were acclimated to normal restraint techniques for bleeding and clinical observations, and to the diet and feeding regimen used on study.

3.2.2 Randomization, assignment to study and maintenance

The animals considered suitable for study were weighed. Animals assigned to study had normal clinical pathology profiles with respect to major organ systems (liver and kidney), as judged by a veterinarian. Using a simple randomization procedure, 20 male animals (weighing 8.06 to 12.32 kg at randomization) were assigned to study. As needed, animals were placed into the treatment groups identified in the following table.

<table>
<thead>
<tr>
<th>Group Number</th>
<th>Dose Level (mg/kg)</th>
<th>Number of Male Animals</th>
<th>Animal Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parquat ion Formulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>43.20</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>86.40</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>129.60</td>
<td>4</td>
</tr>
</tbody>
</table>

Extra animals obtained for the study, but not placed on study, were transferred to the stock colony. Animals assigned to study, but not placed into treatment groups, were also transferred to the stock colony.

Each animal was assigned an animal number to be used in the Provantis™ data collection system and was implanted with a microchip bearing a unique identification number. Each dog was also identified by a permanent tattoo of a vendor animal number on an ear flap. The individual animal number, implant number and study number comprised a unique identification for each animal. Each cage was identified by the animal number, study number, group number and sex. Animal identification was verified during the course of the study, as documented in the data.

Upon arrival, the dogs were housed two per run. This type of housing provided adequate room for exercise for these animals during the acclimation period. At randomization, the

Report Number: 1390-002
dogs were housed individually for protocol specified functions and for the duration of the study.

Fluorescent lighting was provided for approximately 12 hours per day. The dark cycle was interrupted intermittently due to scheduled blood collections. Temperature and humidity were continuously monitored and recorded. The protocol-designated ranges were 64 to 84°F (17.7 to 29°C) and 30 to 70%, respectively. The actual temperature and humidity findings are not reported but were kept within the specified range and are maintained in the study file.

Lab Diet® (Certified Canine Diet #5007, PMI Nutrition International, Inc.) was offered for approximately 2 hours each morning, prior to randomization. Beginning 1 week prior to randomization, food (approximately 300 g) was available for approximately 3 hours a day. On dosing days, the 3 hour feeding period began at approximately 4 hours post-dose. The lot number from each diet lot used for this study was recorded. Certification analysis of each diet lot was performed by the manufacturer. Tap water was available ad libitum via an automatic watering system. The water supply is monitored for specified contaminants at periodic intervals according to SOP. The results of food and water analyses are retained in the Archives. The Study Director is not aware of any potential contaminants likely to be present in the diet or water that would have interfered with the results of the study.

Therefore, no analyses other than those stated above were conducted.

3.2.3 Test article administration

3.2.3.1 Justification for route of administration

The oral route is one of the potential routes of human exposure to this test article.

3.2.3.2 Justification of dose levels

The initial dose was selected by the Sponsor on the basis of available data from previous studies. Subsequent dose levels were selected by the Sponsor based on the results obtained from the previous dose level.

3.2.3.3 Administration

The test article was administered orally once during the study via gelatin capsule. The dose levels for the treated groups were based on the most recent body weights and are identified in the following table.

Report Number: 1390-002
Test Article Administration

<table>
<thead>
<tr>
<th>Group</th>
<th>Dose level (mg paraquat ion/kg)</th>
<th>Dose volume (mL formulation/kg)</th>
<th>Achieved dose (mg formulation/kg)</th>
<th>Dose of emetic (mg/kg)</th>
<th>Animal Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>0.04</td>
<td>43.20</td>
<td>0.02</td>
<td>101-104</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>0.08</td>
<td>86.40</td>
<td>0.04</td>
<td>105-108</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>0.12</td>
<td>129.60</td>
<td>0.06</td>
<td>109-112</td>
</tr>
</tbody>
</table>

3.3 In-life examinations

3.3.1 Cageside observations

All animals were observed for morbidity, mortality, injury and the consumption of the available food and water at least twice daily throughout the duration of the study. On occasion, veterinary consultations were conducted during the course of the study. All treatments and observations were recorded. The medical treatments and observations are not reported but are maintained in the study file. After consultation with the veterinarian on call and/or Study Director, animals meeting the criteria to be considered moribund due to weight loss and/or clinical findings were euthanized *in extremis* as per SOP.

3.3.2 Detailed clinical observations

A detailed clinical examination of each animal was performed daily beginning on Day -7, -14, and -21 for animals at 43.20, 86.40 and 129.60 mg formulation/kg (8, 16, and 24 mg paraquat ion/kg), respectively. Clinical observations were performed through Day 15. On dosing days, clinical observations were conducted continuously for the first 4 hours post-dose, and again at 5, 6, 7, and 12 hours post-dose. On occasion, clinical observations were recorded at unscheduled intervals. Observations of retching, emesis, and defecation were recorded as observed. The appropriate volume (small, medium, or large), color, or consistency (liquid, slightly thick, or very thick) of emesis or any fecal matter was recorded. The presence of any capsule fragments or gel mass was also recorded. Any emesis or feces were immediately cleaned from the run to prevent ingestion by the dog. The observations included, but were not limited to, evaluation of the skin, fur, eyes, ears, nose, oral cavity, thorax, abdomen, external genitalia, limbs and feet, respiratory and circulatory effects, autonomic effects such as salivation, and nervous system effects including tremors, convulsions, reactivity to handling and bizarre behavior.

3.3.3 Body weights

Body weights for all animals were measured and recorded the day after receipt and approximately weekly during the acclimation period, prior to randomization, daily during the study and at necropsy. The body weights recorded during the acclimation period and at necropsy are not reported but are maintained in the study file.

Report Number: 1390-002
3.3.4 Food consumption

Food consumption was measured and recorded daily during the acclimation period, beginning 1 week prior to randomization. Food consumption was measured and recorded daily during the study and is reported weekly. Food consumption data measured prior to randomization are not reported but are maintained in the study file.

3.3.5 Physical examinations

A complete physical examination was conducted on all animals by a staff veterinarian pre-test and prior to terminal necropsy.

3.3.6 Clinical pathology

Clinical pathology evaluations were conducted on all animals assigned to test group pre-test, 24 hours post-dose and prior to necropsy. The animals had access to drinking water but were fasted overnight prior to sample collection. Blood samples (approximately 2 to 3 mL/sample) were collected from the jugular vein. No anticoagulant was used for the clinical chemistry samples.

3.3.7 Plasma analysis

Blood samples were collected from all animals via the jugular vein for determination of the plasma concentrations of paraquat and emetic. Samples (approximately 2.5 mL/sample) were collected from each animal at 15 and 30 minutes and at 1, 2 and 4 hours post-dose. Samples (approximately 5 mL/sample) were collected from each animal pre-dose and at 7, 12 and 24 hours post-dose. The animals were not fasted prior to blood collection, with the exception of the intervals that coincided with fasting for clinical pathology collections.

Samples were placed in plastic tubes containing lithium heparin anticoagulant and were stored on ice until centrifuged at approximately 1500 g for 10 minutes. Following centrifugation, the plasma samples were split into three approximately equal aliquots. The plasma was frozen at approximately -70°C in tightly capped pre-labeled, plastic vials. The label included the study number, relative study day, animal number and the date and time interval of collection.

The samples were stored frozen at approximately -70°C. One set of aliquots was originally maintained at MPI Research and the two remaining sets were shipped on dry ice to the Sponsor at CTL for analysis of plasma concentrations of the test article. The report and Quality Assurance Statement is presented in Appendix 10. As a result of the closure of Syngenta Central Toxicology Laboratory, the remaining aliquot was later shipped on dry ice to CEMAS, North Ascot, Berks, England, UK for analysis of plasma concentrations of emetic. The final reports and Quality Assurance Statements are presented in Appendix 10.

Report Number: 1390-002
3.4 Postmortem study evaluations

3.4.1 Macroscopic

Necropsy examinations were performed under procedures approved by a veterinary pathologist on animals euthanized in extremis or euthanized at the scheduled terminal necropsy. Euthanasia was by an intravenous overdose of sodium pentobarbital solution followed by exsanguination via severing the femoral vessels. The animals were examined carefully for external abnormalities including palpable masses. The skin was reflected from a ventral midline incision and any abnormalities were identified and correlated with ante-mortem findings. The abdominal and thoracic cavities were examined for abnormalities and the organs removed, examined, and, where required, placed in fixative. Formalin was infused into the lung via the trachea. The mouth, including the tongue and buccal cavity, were carefully examined, and the esophagus, stomach, and the length of the small and large intestine were opened and examined for signs of mucosal irritation. The lungs were carefully examined for areas of discoloration or the presence of lesions before and after infusion with formalin. Photographs of lesions were taken at necropsy. These photographs are not included in this report but are maintained in the study file. A glossary of macroscopic terms used in this study is presented in Appendix 6.

3.4.2 Microscopic

Representative samples of protocol-designated tissues from all animals were collected, placed in the appropriate fixative and processed to the slide stage. The processed slides were shipped to the Sponsor for examination. The microscopic examination report is included in Appendix 14. A glossary of macroscopic and microscopic terms used in this study is included in this report.

A glossary of microscopic terms used in this study is included in this report. A full list of organs and tissues collected, weighed, and examined for this study is presented in Appendix 12.

3.5 Statistics

Statistical analysis was not performed by MPI, however, descriptive statistics, including means and standard deviations, were calculated. For continuous endpoints, descriptive statistics consisted of means, standard deviations and group size for each treatment group and time period. For categorical endpoints, descriptive statistics consisted of incident count for each treatment group and time period.

Statistical analysis of the toxicokinetic data (mean with standard error of the mean), was performed by Syngenta Central Toxicology Laboratory and/or CEMAS and are presented in Appendix 10.

Report Number: 1390-002
3.6 **Computer systems**

The computer systems used during the conduct of this study are presented in the following table.

<table>
<thead>
<tr>
<th>MPI Research Computer Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provantis™ v6.5: Provant</td>
</tr>
<tr>
<td>Dispense v5.0: Dispense</td>
</tr>
<tr>
<td>Niagara Framework® Software System v2.3: Environmental monitoring, alarming, and reporting application.</td>
</tr>
<tr>
<td>MPI Archiving System (MArcS) v1.1: In-house developed application for automated storage and retrieval information for archiveable materials (e.g., lab books, study data, wet tissues, slides, etc.).</td>
</tr>
<tr>
<td>MPI Reporting System (MPIRS) v7.0: In-house developed reporting system running SAS® programs primarily reporting on Provantis™data.</td>
</tr>
<tr>
<td>Master Schedule v2.2: Maintains the master schedule for the company.</td>
</tr>
<tr>
<td>SAS® v8.2: The SAS® System is an integrated system of software products that enables a user to perform data entry, retrieval, data management, reporting, graphics, statistical analysis, and applications development.</td>
</tr>
<tr>
<td>Microsoft® Office 2003 Professional: Bundle of integrated productivity tools including word and data processing and communications software. Contains the utilities Microsoft® Access, Excel, InfoPath, Outlook, PowerPoint, Publisher, and Word.</td>
</tr>
</tbody>
</table>

Additional information is available in the MPI Research, Inc., company document titled “Computer Systems Information.”

Report Number: 1390-002
4.0 RESULTS AND DISCUSSION

4.1 In-life examinations

4.1.1 Mortality

A record of animal fate and disposition is presented in Appendix 2. Animals were dosed chronologically by group number and each subsequent dose level was selected based on the outcome of the previous dose.

All animals survived until scheduled study termination, except for animal number 109. Animal number 109, dosed at 129.60 mg formulation/kg (24 mg paraquat ion/kg body weight), was euthanized in extremis on Day 3. Clinical signs of inappetence, decreased activity, salivation, loss of skin elasticity and skin cold to touch were noted prior to euthanasia.

4.1.2 Clinical findings

Continuous post-dose clinical findings are summarized in Table 1. Individual continuous post-dose clinical findings are presented in Appendix 3. Clinical findings are summarized in Table 2. Individual clinical findings are presented in Appendix 4.

Emesis results are tabulated below. After dosing, emesis was seen in all animals tested except for animal number 101 at 43.20 mg formulation/kg (8 mg paraquat ion/kg). This animal had no signs of emesis during the entire study period. For the remaining animals, the mean time to first emesis decreased from 61 minutes to 28 minutes as the dose level rose from 43.20 to 86.40 mg formulation/kg (8 to 16 mg paraquat ion/kg). The mean time to first emesis at the 129.60 mg formulation/kg dose level (24 mg paraquat ion/kg) was two minutes longer than at the 86.40 mg formulation/kg dose level (16 mg paraquat ion/kg), largely the result of one animal which had a much longer interval to first emesis than the other three dogs at this level. Overall, the duration of emesis increased with increasing dose.

In general, the frequency of emesis increased with dose. At 43.20 mg formulation/kg (8 mg paraquat ion/kg), 0-2 instances of emesis were noted per animal. At 86.40 mg formulation/kg (16 mg paraquat ion/kg), the frequency increased to 2-4 instances while at the highest level tested, 129.60 mg formulation/kg (24 mg paraquat ion/kg), the frequency ranged from 1-10 instances.

Individual times to first and last emesis observed are presented in the following table.

Report Number: 1390-002
Clinical Observations - Emesis Findings

<table>
<thead>
<tr>
<th>Dose Level (mg formulation/kg)</th>
<th>Animal number</th>
<th>Time to First Emesis</th>
<th>Mean Time to Emesis</th>
<th>Time to Last Emesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.20</td>
<td>101</td>
<td>NA</td>
<td>1 h 1 m</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>102</td>
<td>35 m</td>
<td></td>
<td>54 m</td>
</tr>
<tr>
<td></td>
<td>103</td>
<td>1 h 30 m</td>
<td></td>
<td>1 h 30 m</td>
</tr>
<tr>
<td></td>
<td>104</td>
<td>59 m</td>
<td></td>
<td>59 m</td>
</tr>
<tr>
<td>86.40</td>
<td>105</td>
<td>30 m</td>
<td>28 m</td>
<td>1 h 11 m</td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>14 m</td>
<td></td>
<td>26 m</td>
</tr>
<tr>
<td></td>
<td>107</td>
<td>11 m</td>
<td></td>
<td>32 m</td>
</tr>
<tr>
<td></td>
<td>108</td>
<td>56 m</td>
<td></td>
<td>57 m</td>
</tr>
<tr>
<td>129.60</td>
<td>109</td>
<td>9 m</td>
<td>30 m</td>
<td>2 h 15 m</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>8 m</td>
<td></td>
<td>52 m</td>
</tr>
<tr>
<td></td>
<td>111</td>
<td>26 m</td>
<td></td>
<td>45 m</td>
</tr>
<tr>
<td></td>
<td>112</td>
<td>1 h 16 m</td>
<td></td>
<td>1 h 16 m</td>
</tr>
</tbody>
</table>

m – minute

h – hour

NA – Not Available/Not Applicable (no emesis observed)

Aside from the observations noted above, and those seen in animal number 109 prior to euthanasia, observations were few and typical of dogs of this age.

4.1.3 Body weights

Body weight data are summarized in Table 3. Individual body weight values are presented in Appendix 5.

Animals at all dose levels tested lost weight in the days immediately after administration of A3879R. At the two lower dose levels, 43.20 and 86.40 mg formulation/kg (8 and 16 mg paraquat ion/kg), body weights returned to, or near to, Day 1 values by study termination. At the highest dose tested, 129.60 mg formulation/kg (24 mg paraquat ion/kg), body weights remained below Day 1 values throughout the study.

The animal euthanized in extremis lost weight steadily each day and was euthanized because of the severity of the observations after treatment.

4.1.4 Food consumption

Food consumption data are summarized in Table 4. Individual food consumption values are presented in Appendix 6.

Food consumption was decreased at all three dose levels tested in the days immediately following dose administration. At the two lower dose levels, 43.20 and 86.40 mg formulation/kg (8 and 16 mg paraquat ion/kg), food consumption gradually returned to normal by the end of the study. At the highest dose level, 129.60 mg formulation/kg (24 mg paraquat ion/kg), food consumption remained depressed throughout the study.

Report Number: 1390-002
paraquat ion/kg), food consumption improved over the two week study period but did not return completely to pre-study levels.

4.1.5 Physical examinations

Individual physical examination findings are presented in Appendix 7.

All animals appeared normal at the time of pre-test physical examination and were acceptable for use on study. The only observations noted upon physical examination prior to necropsy were findings of abrasions or sparse hair, which are common for dogs of this age.

4.1.6 Clinical chemistry and pathology

Clinical chemistry values are summarized in Table 5. Individual clinical chemistry values are presented in Appendix 9.

The clinical pathology interpretation of the results is presented below and in Appendix 8.

One animal (animal number 109) at 129.60 mg formulation/kg (24 mg paraquat ion/kg) exhibited decreased sodium, potassium and chloride, increased phosphorus, urea nitrogen, creatinine, total protein, albumin, globulins and glucose 24 hours post-dose. No other animals at this or other dose levels exhibited effects at any interval. Blood samples were obtained from animal number 109 prior to euthanasia that revealed a worsening of the above mentioned effects compatible with renal failure, as well as additional effects compatible with hepatic injury [increased aspartate aminotransferase (AST) and alanine aminotransferase (ALT)]. Triglycerides and cholesterol were also mildly to moderately elevated.

4.1.7 Plasma analysis

Detailed results of the analysis of plasma concentrations of paraquat and emetic are presented in Appendix 10.

Summary results of the analysis of plasma concentrations of the paraquat and emetic are summarized in the following table. The plasma paraquat 24-hour AUC values are displayed graphically in Figures 1 and 2.

Report Number: 1390-002
Plasma Concentrations of Paraquat and Emetic

<table>
<thead>
<tr>
<th>Dose received</th>
<th>Plasma Analysis</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg A3879R/kg</td>
<td>mg paraquat ion/kg</td>
<td>Pq 24h AUC (µg/mL.h)(^a)</td>
</tr>
<tr>
<td>43.20</td>
<td>8</td>
<td>8.85 ± 1.34</td>
</tr>
<tr>
<td>86.40</td>
<td>16</td>
<td>11.21 ± 1.34</td>
</tr>
<tr>
<td>129.60</td>
<td>24</td>
<td>23.51 ± 5.87</td>
</tr>
</tbody>
</table>

\(^a\)Plasma analysis at Syngenta CTL and reported in 026791/Phase/Revision -001. Appendix 10

Mean peak levels were estimated based on the levels measured at the specific timepoints. Following administration of 43.20 mg formulation/kg (8 mg paraquat ion/kg) the mean peak plasma level was observed at 1 hour post-dose with levels of 2.16 ± 0.52 µg/mL. Removal of paraquat from the plasma was gradual and by 24 hour post-dose the majority had been eliminated resulting in a mean 24 hour AUC value of 8.85 ± 1.34µg/mL.h.

After a dose of 86.40 mg formulation/kg (16 mg paraquat ion/kg) the mean peak plasma level was observed at 30 minutes with levels of 4.71 ± 1.56 µg/mL. Elimination of paraquat from the plasma was gradual and by 24 hours post-dose the majority had been eliminated resulting in a mean 24 hour AUC value of 11.21 ± 1.34 µg/mL.h. The peak plasma concentration and the 24 hour AUC value were higher than those observed from the 43.2 mg formulation/kg dose (8 mg paraquat ion/kg).

At the highest dose level of 129.60 mg formulation/kg (24 mg paraquat ion/kg) the mean peak plasma level was observed at 30 minutes post-dose with levels of 8.21 ± 2.60 µg/mL. Elimination of paraquat from the plasma was gradual and by 24 hours post-dose the majority had been eliminated resulting in a mean 24 hour AUC value of 23.51 ± 5.87 µg/mL.h. The peak plasma concentration and the 24 hour AUC value were higher than those observed from the previous doses of 43.2 and 86.40 mg formulation/kg dose (equivalent to 8 and 16 mg paraquat ion/kg).

Following administration of A3879R mean peak plasma emetic levels were observed at 1 hour post-dose for the lower dose and at 30 minutes post-dose for the higher doses.

The dose of 129.60 mg formulation/kg (24 mg paraquat ion/kg) resulted in the highest systemic exposure of emetic. At all three doses the elimination of the emetic from the plasma was gradual and essentially complete by 12 to 24 hours postdose.

4.2 Postmortem Study Evaluations

The pathology interpretation of the results is presented below and in Appendix 11.

Report Number: 1390-002
4.2.1 Macroscopic

Macroscopic observations are summarized in Table 6. The pathology interpretation of the results is presented here and detailed in Appendix 13. There were no definitive test article-related macroscopic effects observed. Minimal to mild white discoloration of the lung and/or white focus/foci were observed in two males receiving 43.20 mg formulation/kg (8 mg paraquat ion/kg). Mild tan focus/foci were observed in one male receiving 129.60 mg formulation/kg (24 mg paraquat ion/kg). A strong dose correlation was not present and similar findings were not observed within the 86.40 mg formulation/kg group (16 mg paraquat ion/kg), therefore a relationship to treatment was interpreted to be unlikely. One male receiving 129.60 mg formulation/kg (24 mg paraquat ion/kg) was terminated prior to study completion due to clinical signs; all tissues were interpreted to be within normal limits. All other macroscopic lesions were interpreted to be sporadic and incidental.

4.2.2 Microscopic

Results of the microscopic examination are presented in Appendix 14. One dog which received 129.60 mg formulation/kg (24 mg paraquat ion/kg) was euthanised on Day 3 (number 109). The major histopathological findings in this animal were moderate renal tubular degeneration/necrosis and slight congestion and hemorrhage in the lungs. There were no lesions in the gastrointestinal tract.

In the lungs of the remaining animals that survived to Day 15, there was alveolar macrophage infiltration, pneumocyte hypertrophy and interstitial fibrosis. Overall, the lung lesions were graded as minimal or slight in severity and tended to be focal or multifocal in distribution rather than diffuse. There was no clear distinction between groups although the lesions appeared marginally more severe in the highest dose group (129.60 mg formulation/kg; equivalent to 24 mg paraquat ion/kg).

Except for dog number 109, there were only minimal changes in the kidney (tubular basophilia, tubular dilatation and interstitial inflammatory cell infiltration). There was no evidence of necrosis. A minimal degree of intratubular microlithiasis (mineralization) was a consistent feature but this is a common finding in control dogs and is considered to be unrelated to test substance administration.

There were no significant lesions in the other tissues examined.

Report Number: 1390-002
Incidence of Key Paraquat Induced Lesions with A12837B A3879R

<table>
<thead>
<tr>
<th>Microscopic Findings</th>
<th>Dose Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose Level (mg formulation/kg)</td>
<td>43 86 130</td>
</tr>
<tr>
<td>Dose Level (mg paraquat ion/kg)</td>
<td>8 16 24</td>
</tr>
<tr>
<td>Number examined</td>
<td>4 4 3 (1*)</td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
</tr>
<tr>
<td>No relevant abnormalities</td>
<td>4 4 3 (0)</td>
</tr>
<tr>
<td>Tubular degeneration/ necrosis</td>
<td>0 0 0 (1)</td>
</tr>
<tr>
<td>Lung</td>
<td></td>
</tr>
<tr>
<td>No relevant abnormalities</td>
<td>0 0 0</td>
</tr>
<tr>
<td>Fibrosis</td>
<td>4 2 2 (0)</td>
</tr>
<tr>
<td>Alveolar macrophage infiltration</td>
<td>4 4 3 (1)</td>
</tr>
<tr>
<td>Pneumocyte hypertrophy</td>
<td>4 4 3 (0)</td>
</tr>
</tbody>
</table>

G = gavage dose
(*) – animals euthanized in extremis

4.3 Discussion
All animals receiving a single oral dose of 43.20 and 86.40 mg formulation/kg (8 and 16 mg paraquat ion/kg body weight) survived until scheduled study termination on Day 15. No definitive paraquat-related effects were seen in clinical chemistry or macroscopic pathology parameters. Emesis, body weight loss and reduced food consumption were noted in these groups in the period immediately after administration. However, these effects were transitory in nature and the animals were returning to a normal condition by study termination.

Emesis was more frequent and both weight loss and reduction in food consumption were still evident at study termination following treatment with a single oral dose of 129.60 mg formulation/kg (24 mg paraquat ion/kg body weight). In addition, one animal was euthanized in extremis on Day 3 with observations of inappetence, decreased activity, salivation, loss of skin elasticity and skin cold to touch. The outcome in this animal was consistent with high systemic exposure to paraquat, as evidenced by the plasma paraquat 24 hour AUC. The terminal blood sample and histopathology results obtained from this dog were consistent with renal failure (demonstrated by clinical pathology and histopathology) and hepatic injury (demonstrated by clinical pathology only). This is also consistent with a high dose of paraquat and was probably the principal cause of the clinical condition of this animal.

Peak plasma paraquat levels were observed between 30 minutes and 1 hour post-dose. The timing of peak plasma emetic levels was similar, between 30 minutes and 1 hour post-dose.

Report Number: 1390-002
Increasing doses of A3879R gave a dose-dependent increase in the systemic exposure to paraquat. Mean peak plasma emetic levels were observed at 1 hour post-dose for the lower dose and at 30 minutes post-dose for the higher doses. The dose of 129.60 mg formulation/kg (equivalent to 24 mg paraquat ion/kg) resulted in the highest systemic exposure of both paraquat and emetic.

The lung lesions observed in this study are typical findings for paraquat exposure in the dog.

Report Number: 1390-002
5.0 CONCLUSION

A single oral capsule dose of 200 g paraquat ion/L SL formulation (A3879R) was tolerated at the 43.20 and 86.40 mg formulation/kg dose levels (8 and 16 mg paraquat ion/kg). Those effects observed (e.g. emesis) were transitory, and not deleterious in nature. At the highest dose level tested, 129.60 mg formulation/kg (24 mg paraquat ion/kg), one animal was euthanized in extremis with post-mortem findings of moderate tubular degeneration/necrosis and slight congestion and hemorrhage in the lungs. In the surviving animals at this dose, reduction in body weight and food consumption were not resolved by study termination. These data indicate that 129.60 mg A3879R/kg (24 mg paraquat ion/kg) is a minimum lethal dose.

Report Number: 1390-002
TABLE 1 Summary of Continuous Postdose Clinical Findings

On occasion, clinical findings may have been observed more than once during the interval and were recorded accordingly. The individual continuous post-dose clinical findings table of this appendix reports the findings observed during the initial 4 hours following test article administration, not the number of times observed.
TABLE 2 Summary of Clinical Findings

On occasion, clinical findings may have been observed more than once during the interval and were recorded accordingly. The individual continuous post-dose clinical findings table of this appendix reports the findings observed during the initial 4 hours following test article administration, not the number of times observed.
TABLE 3 Summary of Body Weight Values

Report Number: 1390-002
TABLE 4 Summary of Food Consumption Values
TABLE 5 Summary of Clinical Chemistry Values

Report Number: 1390-002
TABLE 6 Summary of Macroscopic Observations

Report Number: 1390-002
FIGURES SECTION
FIGURE 1 Plasma Paraquat 24 Hour AUC

<table>
<thead>
<tr>
<th>Plasma paraquat (µg/ml)</th>
<th>Area Under Curve (µg/ml.h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.2mg A3879R/kg</td>
<td>1h</td>
</tr>
<tr>
<td></td>
<td>1.33 ± 0.45</td>
</tr>
<tr>
<td>86.4mg A3879R/kg</td>
<td>3.17 ± 0.86</td>
</tr>
<tr>
<td>129.6mg A3879R/kg</td>
<td>6.51 ± 1.81</td>
</tr>
</tbody>
</table>

Report Number: 1390-002
FIGURE 2 Mortality vs. Dose vs. Plasma Paraquat 24 Hour AUC

(Number of animals terminated/number of animals dosed)
APPENDIX 1 Vehicle and Test Article Information
Vehicle and Test Article Information

<table>
<thead>
<tr>
<th>Date Received:</th>
<th>July 16, 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier:</td>
<td>Torpac, Inc.</td>
</tr>
<tr>
<td></td>
<td>Fairfield, New Jersey</td>
</tr>
<tr>
<td>Amount Received:</td>
<td>1 x 100 capsules</td>
</tr>
<tr>
<td>Label Identification:</td>
<td>Torpac Size # 000 Lock Ring Empty Gelatin Capsules</td>
</tr>
<tr>
<td>Lot Number:</td>
<td>640987</td>
</tr>
<tr>
<td>Physical Characteristics:</td>
<td>Empty gelatin capsules</td>
</tr>
<tr>
<td>Expiration Date:</td>
<td>July 16, 2008</td>
</tr>
<tr>
<td>Storage:</td>
<td>Room temperature</td>
</tr>
<tr>
<td>TMC Number:</td>
<td>3020CA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Received:</th>
<th>January 18, 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier:</td>
<td>Torpac, Inc.</td>
</tr>
<tr>
<td></td>
<td>Fairfield, New Jersey</td>
</tr>
<tr>
<td>Amount Received:</td>
<td>200.0000 Units</td>
</tr>
<tr>
<td>Label Identification:</td>
<td>#12 Torpac Gelatin Capsules</td>
</tr>
<tr>
<td>Batch Number:</td>
<td>1878</td>
</tr>
<tr>
<td>Physical Characteristics:</td>
<td>Clear light yellow capsules</td>
</tr>
<tr>
<td>Expiration Date:</td>
<td>September 30, 2011</td>
</tr>
<tr>
<td>Storage:</td>
<td>Room temperature</td>
</tr>
<tr>
<td>TMC Number:</td>
<td>070088</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Received:</th>
<th>January 25, 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier:</td>
<td>Syngenta Crop Protection, Inc.</td>
</tr>
<tr>
<td></td>
<td>Greensboro, North Carolina</td>
</tr>
<tr>
<td>Amount Received:</td>
<td>500.0000 mL</td>
</tr>
<tr>
<td>Label Identification:</td>
<td>Parquat</td>
</tr>
<tr>
<td>Batch Number:</td>
<td>J4818/175</td>
</tr>
<tr>
<td>Physical Characteristics:</td>
<td>Dark green liquid</td>
</tr>
<tr>
<td>Expiration Date:</td>
<td>August 30, 2008</td>
</tr>
<tr>
<td>Storage:</td>
<td>Room temperature, protected from light</td>
</tr>
<tr>
<td>TMC Number:</td>
<td>0700BF</td>
</tr>
</tbody>
</table>

Tap water was provided by MPI Research, Inc.

Report Number: 1390-002
APPENDIX 2
Record of Animal Fate and Disposition
APPENDIX 3 Individual Continuous Postdose Clinical Findings

On occasion, clinical findings may have been observed more than once during the interval and were recorded accordingly. The individual continuous post-dose clinical findings table of this appendix reports the findings observed during the initial 4 hours following test article administration, not the number of times observed.
APPENDIX 4 Individual Clinical Findings

On occasion, clinical findings may have been observed more than once during the interval and were recorded accordingly. The individual clinical findings table of this appendix reports the findings observed, not the number of times observed.
APPENDIX 5 Individual Body Weight Values
Clinical Pathology Interpretation

Clinical Chemistry
One animal at 129.60 mg formulation/kg (animal number 109) exhibited decreased sodium, potassium and chloride, and increased phosphorus, urea nitrogen, creatinine, total protein, albumin, globulins, and glucose 24 hours postdose. No other animals at this or other dose levels exhibited effects at any interval. Blood samples were obtained from animal number 109 prior to scheduled termination that revealed a worsening of the above mentioned effects compatible with renal failure, as well as additional effects compatible with hepatic injury [increased aspartate aminotransferase (AST) and alanine aminotransferase (ALT)]. Triglycerides and cholesterol were also mildly to moderately elevated.

Jan L. VanSteenhouse, D.V.M., Ph.D., D.A.C.V.P. Date
Director, Clinical Pathology
Study Clinical Pathologist

Report Number: 1390-002
APPENDIX 9 Individual Clinical Chemistry Values
Macroscopic

There were no definitive test article-related effects observed. Minimal to mild white discoloration of the lung and/or white focus/foci were observed in two males receiving 43.20 mg formulation/kg and mild tan focus/foci were observed in one male receiving 129.60 mg formulation/kg; however, a strong dose correlation was not present and similar findings were not observed within the 86.40 mg formulation/kg group, therefore toxicologic significance was interpreted to be unlikely. One male receiving 129.60 mg formulation/kg died prior to study completion; all tissues were interpreted to be within normal limits. All other macroscopic lesions were interpreted to be sporadic and incidental.

Shelley L. Beazley, D.V.M., D.A.C.V.P. Date

Study Pathologist
APPENDIX 15 Protocol and Amendment
APPENDIX 16 Deviations
DEVIATIONS

This study was conducted in accordance with the United States Environmental Protection Agency (EPA), Federal Insecticide, Fungicide and Rodenticide Act (FIFRA), Good Laboratory Practice (GLP) Standards, 40 Code of Federal Regulations (CFR) Part 160. The analytical and pathology phase of the study were conducted according to the current version of the United Kingdom Principles of Good Laboratory Practice (The UK GLP Regulations) and the Organization for Economic Cooperation and Development (OECD) Principles of Good Laboratory Practice (ENV/MC/CHEM(98)17) as interpreted by Syngenta Central Toxicology Laboratory (CTL), and the protocol, with the exception of the following deviations:

Protocol Deviations

Size 12 Torpac gelatin capsules were received from Fairfield, New Jersey.

Thirteen animals placed on study were younger than 9 months of age at receipt.

Prior to initiation of test article administration, on several occasions, for several animals, food was removed 1 to 8 minutes outside the allowable window.

During the week prior to dosing, several animals placed on study consumed less than 90% of the 300 g of food offered.

Two animals placed on study had body weights that fell outside ±20% of the mean body weight.

On the day of dosing, at 30 minutes postdose, the blood sample collected for the determination of the plasma concentration of the test article for a single animal at 86.40 mg formulation/kg (animal number 104) was clotted, resulting in serum instead of plasma.

On the day of dosing, for a single animal at 43.20 mg formulation/kg (animal number 101), no color was recorded with the observation of defecation.

On two occasions, the temperature of the animal room was outside the protocol specified range of 64 to 84°C.

At necropsy, for a single animal at 129.60 mg formulation/kg (animal number 109), the mouth, including the tongue and buccal cavity, were not examined, and the esophagus, stomach, and the length of the small and large intestines were not opened and examined for signs of mucosal irritation. The lungs were not examined for areas of discoloration or the presence of any lesions.

In the opinion of the Study Director, these minor deviations did not affect the quality or integrity of the study.

Report Number: 1390-002