The Chemical Company

BADER FARMS ET AL V. MONSANTO ET AL. **EXHIBIT**

EXHIBIT
PLTF-1145

Dicamba

Dicamba Tolerant Crop Uses

Dicamba Product Registrations

Pending and Planned in the US

- MON1691, (Clarity equivalent)
- Engenia herbicide, (BAPMA salt of dicamba)
- MON100111, (Engenia equivalent for DT uses only)
- MON1750, (Clarity + glyphosate premix)
- conventional crop uses approved 2-14-13
- Monsanto will submit for Clarity + glyphosate premix use on DT soybean after trait deregulation
- Monsanto will submit for Engenia + glyphosate premix after Engenia registration

Title and Content, Box Layout

USDA Environmental Impact Statement

New Challenges and Opportunities

- USDA could not conclude from their environmental assessment (EA) soybean and cotton that there would be no significant impact from the deregulation of DT
- Triggers USDA to develop an Environmental Impact Statement (EIS)
- USDA is required to provide a work plan for the EIS
- Expected to be available for review in June 2013
- Will provide a better indication of expected timelines for completion

DT soybean and cotton trait deregulation expected mid-2015 or later

USDA Environmental Impact Statement

New Challenges and Opportunities

- USDA will rely on EPA resources in developing the EIS
- BASF will cooperate with EPA to provide relevant information
- In keeping with the close regulatory cooperation on this project, BASF has reaffirmed our commitment to Monsanto to provide regulatory support and expertise to the EIS process, as needed
- BASF will encourage EPA to continue the registration process for process Engenia™ herbicide and the proposed DT soybean use during the EIS

Title and Content, Box Layout

Off Target Movement Concerns

Physical Drift and Volatility

- EPA continues to be concerned about the potential for off target movement of
- BASF has taken proactive measures to address this concern:
- Developed proposed label restrictions to minimize off target movement.
- Provided data to EPA documenting the low volatility of dicamba
- Developed a proximity tool to help applicators identify buffer requirements and sensitive
- MON has conducted non-guideline field crop response studies to document dicamba drift
- MON has conducted non-guideline field flux studies to quantify dicamba volatility.

Title and Content, Box Layout

New Dicamba Crop Residue Studies

Dicamba residues resulting from spray drift

- the setting of dicamba residue tolerances in over 200 crops. New dicamba crop residue studies are being initiated in 2013 to allow for
- Preharvest use scenarios
- Defensive strategy to establish dicamba residues in the event of off-target drift
- The first new crop tolerances are expected to be establish in 2015 with the remaining tolerances established in 2016.
- Priorities set based on crop value, importance and occurrence
- nut and vegetable crops that may be exposed to dicamba spray drift. The tolerances are expected to allow for the harvest and sales of fruit,
- Studies are not designed to support export markets

Title and Content, Box Layout

Pltfs-1145.0006

EPA/USDA Field Day

University of Maryland, Beltville, MD Research Station

- BASF will be hosting a field day for EPA/USDA to demonstrate
- Herbicide resistant weeds population development and management
- Spray drift causes and management, including latest advances in nozzle technology
- Strategies for advancing applicator education and product stewardship crop awareness programs, including use of proximity tools for improved sensitive area and
- BEAD and HED. EPA attendance is expected from Product Management teams, EFED,

Title and Content, Box Layout

New Dicamba Technical Source

For Use in US Products Only

- To address short and intermediate term demand for dicamba technical, Yangnong (China) has been identified as a possible new source
- Negotiations with Yangnong are ongoing to secure the source for BASF
- Yangnong will add new capacity 3Q13.
- Current Chinese dicamba production capacity is sold out.
- A US registration strategy has been outlined that will meet the expected increase in dicamba technical demand by 1Q15.
- Currently evaluating the opportunity to register this source in other regions.

Title and Content, Box Layout

Making the Most of the Available Time

EIS Delay = Opportunity

- Alleviate anticipated supply issues with new EPA approved dicamba source in 2015
- Manage inadvertent residues from spray drift with EPA approved nontarget crop residue tolerances in 2015/2016
- Develop tank mix additive or other improvements for the Engenia herbicide system
- Additional DT soybean varieties/acreage will be available as well as DGT cotton

Title and Content, Box Layout

Deposition Data for Determination **Development of Ground Spray** of Buffers - '2012

Spray Buffer Improvements How do We Get These Improvements?

■ There are 2 paths ...

Wind Tunnel

Field Trial

Study Treatments

3 Tank Mixes, 3 Nozzles, 2 Wind Speeds

A) Wind Target 3-5 mph

B) Wind Target 10-15 mph

Table 1. Study Treatments

Treatment	Formulation	Rate (lb/ac)	Nozzie	Carrier Volume (gpa)	Travel Speed (mph)
	Clarity		XR 8004	10	10
2	Clarity 1	_	TTI 11004	10	10
ယ	Clarity 1	_	AIXR 11004	10	10
4	BAS 183 22 H 1	_	XR 8004	10	10
ၯ	BAS 183 22 H 1	_	TTI 11004	10	1 0
တ	BAS 183 22 H 1		AIXR 11004		10
7	BAS 183 22 H 1 & 2	_	XR 8004	10	10
ထ	BAS 183 22 H ^{1 & 2}	_	TTI 11004	10	10
9	BAS 183 22 H 1 & 2		AIXR 11004	10	10

¹ Induce (NIS) @ 0.25%v/v 2 PowerMax 540SL @ 1 lb ae/ac

Field Design Diagram

Figure 1. Field layout with sample collector placement.

Sample collector placement intervals: 4, 8, 16, 32, 45, 60, 75, 90,105, 120 m BASF CONFIDENTIAL

In Field Plot Layout

Deposition Variability Across the Field

3 sampling Lines

17

Results

The Chemical Company	mpany						Resultin	o Buffer	
				_	Mean Wind Peak Wind	Peak Wind	1 lb/ac	0.5 lb/ac	
Treatment	Mix	Nozzie	VMD ₅₀	Wind	(mph)	(mph)	(feet)	(feet)	
11	Clarity	XR	236	-	4.85	6.28	293	147	
T2	Clarity	∃	713	-	4.67	5,81	58	29	
3	Clarity	AIXR	432	<u>۔</u>	4.07	5.13	53	27	
T4	22H	XR	256	_	4.86	5.96	>380	250	•
75	22H	=	590	_	7.05	8.79	60	30	Low speed
16	22H	AIXR	419	_	5.36	6.88	240	120	Wind
77	22H+rpm	XR	202	_	8.15	10.08	268	134	
81	22H+rpm	∄	673		7.24	8.67	13	7	
Т9	22H+rpm	AIXR	360		4.29	5.30	527	264	
T10	clarity	XR	236	エ	8.57	10.85	264	132	
T11	clarity	∄	713	I	8.47	10.13	123	62	
T12	clarity	AIXR	432	I	9.71	11.79	347	174	
Т13	22H	XR	256	ェ	4.34	5.85	· >380	250	
T14	22H	∄	590	Ι	7.35	9.59	212	106	High speed
T15	22H	AIXR	419	Ξ	8.03	9.82	367	184	Wind
T16	22H+rpm	XR	202	Ŧ	9.01	11.30	>380	>380	
T17	22H+rpm	∃	673	I	10.25	12.87	266	133	
T18	22H+rpm	AIXR	360	エ	10.44	12.94	>380	>380	
17					BASF CONFIDENTIAL	DENTIAL			
-									

Particle Size Analysis - Wind Tunnel

Concluding Our Work

Final Report Has Been Submitted to EPA

Meeting to be scheduled to present data to EPA

air born chemical movement - '2013 Comparison of multiple sampling methods for evaluation of off field

Introduction

- This study is intended to document oversampling and poor deposition collectors mainstream techniques such as rotorod samplers and correlation of 3D active air sampling when compared to
- l Infield doppler instruments will be used in tandem with air samplers in an attempt to quantify the unnatural movement of particles to the samplers
- This work is viewed as proactive work to counter claims by activists and errant researchers
- Additionally it was deemed important that BASF generate generated by others on our product. data on our own product to put into perspective data

Treatments (4 actives, 3 nozzles)

4	ယ	2		Treatment
Roundup Powermax	Clarity	Pursuit	Weedar	Product
44 fl oz/ac	16 fl oz/ac	6 fl oz/ac	4 pt/ac	Rate
30	30	30	30	Target Volume GPA
-	XR8004,	XR8002,		Nozzle

052108

Field Design

Sampling Methods Used in this Study

RotoRod

Active Air Sampling

Petri Dish

In Field Plot Layout

BASF CONFIDENTIAL

Field Site Setup

Study Status

- All samples are at the lab
- Analytical Methods are operational
- Analysis is expected to begin soon

Company