BADER FARMS ET AL V. MONSANTO ET AL

EXHIBIT

PLTF-104

Results and Relations Between Vapor Dicamba Volatility Measurements -Concentration and Plant Injury

Alison MacInnes, TCM 2010

TCM 2010

Monsanto Confidential

Dicamba review

- Concern about off-site movement of Dicamba
- Spray drift
- Tank contamination
- Active ingredient volatility
- Drift and contamination are issues for all herbicide formulations
- How real of an issue is volatility?

Dicamba Volatility Tests

- Laboratory tests
- Centrifuge tube tests
- Humidome tests
- ▶ See Julie Webb and Alison MacInnes poster for methods
- Field tests
- Stollte Farm tests
- University of Tennessee tests
- See Hannah Smith poster

Data Generated in the Humidome Test

- Direct measurement of Dicamba in the air
- Monsanto is the only company directly measuring Dicamba
- Comparison of volatility from different surfaces
- Comparison of volatility at different temperatures
- Injury data on sensitive plants

4

Monsanto Confidential

Factors that affect volatility

- Surface
- Soil vs canopy
- Type of soil
- Moisture content of soil
- Temperature
- ▶ Range of temperatures 27°C and 35°C
- Length of exposure
- Injury related to length of exposure

Volatility from soybean canopy vs soil

्

Monsanto Confidential

soybean canopy vs soil At 27°C more volatility is detected from a

surface vs canopy At 35°C more volatility is detected from soil

- W

Monsanto Confidential

TCM 2010

in temperature

The effect of temperature on volatility

Dicamba applied Dicamba detected on PUF is small percentage of

Closed System Test

- 20ml of Dicamba acid solutions placed in a Petri dish
- Soybeans placed in the humidome

Placed in growth chamber at 35°C for 24 hours

- 1 volume of air removed through the PUF
- PUF extracted and analyzed by LC-MS

were too low to detect by LC-MS Soybean injury observed when levels of Dicamba

0.0039%	0.0078%	0.0156%	0.0313%	0.0625%	0.1250%	0.2500%	0.5000%	
		Ž.		elige elige				
*	*	*	1.8*	2.2	12.3	34.4	161.9	
					d.,			
16%	21%	25%	27%	32%	33%	42%	68%	
	#), (A)			*** *** •		

* At or below the level of detection on LC-MS

Comparison of Volatility of Dicamba Formulations

- Dicamba formulation tank mixed with Roundup® PowerMAXTM
- Tank mix sprayed onto 50/50 soil at 10 GPA
- Indicator plants placed onto soil, foil protecting the roots
- Humidome placed in growth chamber
- Air pulled through PUF at 2 LPM for 24 hours

13

Monsanto Confidential

Dicamba detected in the air Injury in soybeans is independent of the level of

30% injury is observed in soybeans after 24 hour exposure to Dicamba formulations.

The level of Dicamba in the air is much higher at 35°C vs 27°C but the injury remains constant at 30%.

Velvetleaf plants show a dose response

Future plans in the humidomes

- Soil
- Type
- Moisture content
- Temperature
- Range of temperatures
- DOE study
- Dicamba sensitive species
- Tomatoes
- Grapes
- Peppers
- Melons
- Sensitivity at different temperatures, Dicamba concentrations, length of exposure

Acknowledgements

- ▶ Julie Webb, CC Rodriguez and Jenny Krebel
- Mason Hughes and Wen Su
- Dan Wright, Ron Brinker and Amanda Herr

Monsanto Confidential