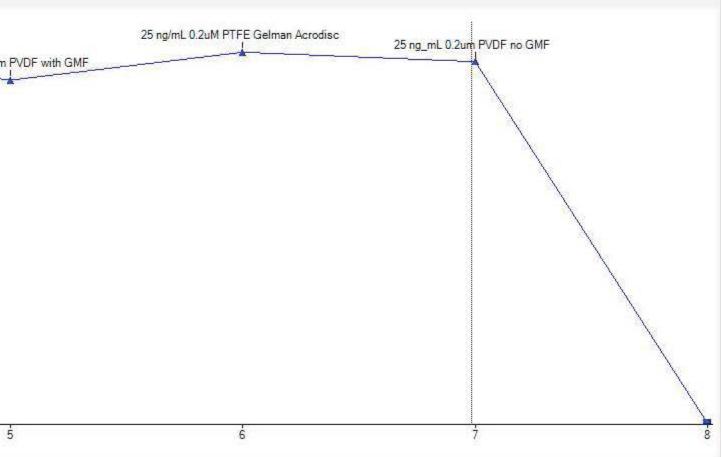
		02 Filters.qsession)]														
Mo File Edit Process Windo	ow Help															
ኛ 🗃 🗕 🗋 Glyphosate	*															
Components & Groups IS H	8 a i	💭 🛩 👻 🖁 🗛 🛛 🖓 All Sample Types	• ~ * * *		18	10	27.	24		0	x			4		
All Components	Index	Sample Name	Sample Type	Dilution Factor		Ouffier Reasons	Actual Concentration	Area	Area Ratio	Height	Retention Time	Used	Calculated Concentration	Ion Ratio	Accuracy	
AMPA Group IS Group	3	Slvnt Blank	Unknown	1.00	AMPA IS		1.00	43725	N/A	5110	1.30		N/A	1.0000	N/A	
Glufosinate Group Glyphosate Group	17	25 ng/mL unfiltered	Standard	1.00	AMPA IS		1.00	105377	N/A	9217	1.33		N/A	1.0000	N/A	
V-acetyl glyphosate Group	31	25 ng_mL 0.2um PTFE Fisherbrand	Quality Control	1.00	AMPA IS		1.00	102293	N/A	8806	1.33		N/A	1.0000	N/A	
All Internal Standards	45	25 ng/mL 0.45um Nylon	Quality Control	1.00	AMPA IS		1.00	99571	N/A	8648	1.32		N/A	1.0000	N/A	
MPA IS Blufosinate IS	59	25 ng_mL 0.2um PVDF with GMF	Quality Control	1.00	AMPA IS		1.00	92080	N/A	8227	1.32		N/A	1.0000	N/A	
alutosinate IS Slyphosate IS	73	25 ng/mL 0.2uM PTFE Gelman Acrodisc	Quality Control	1.00	AMPA IS		1,00	99541	N/A	8370	1.33		N/A	1.0000	N/A	
	87	25 ng_mL 0.2um PVDF no GMF	Quality Control	1.00	AMPA IS		1.00	97001	N/A	8038	1.33		N/A	1.0000	N/A	
All Analytes AMPA 1 AMPA 2 Blufosinate 1	101	H2O	Unknown	1.00	AMPA IS		1.00	N/A	N/A	N/A	N/A		N/A	N/A	N/A	
Glufosinate 3 Glyphosate 1 Glyphosate 2 Glyphosate 3 N-acetyl glyphosate 2 N-acetyl glyphosate 3	AMPA IS 1.0 9.0 8.0 7.0	e4 -	unfiltered	25 ng	g_mL 0.2um PTFE Fisherbra	nd	25 ng/mL 0.	45um Nylon		25 ng_mL 0.2	2um PVDF with	I GMF	25 ng/mL 0.	2uM PTFE Gelr	man Acrodisc	25 ng_mL 0.2um PVDF no GMF
	6.0 Pauk 5.0															

0.0e0 -

1


2

2

Visible Row Index

4

Collaboration

We agreed to collaborate corn, carrots and avocado using the following fortification protocol.

QC	Matrix	Level	Ν
Control	Corn	0	1
Linearity	Corn	50	2
Linearity	Corn	200	2
Linearity	Corn	500	2
Control	Carrot	0	1
Linearity	Carrot	50	2
Linearity	Carrot	200	2
Linearity	Carrot	500	2
Control	Avocado	0	1
Linearity	Avocado	50	2
Linearity	Avocado	200	2
Linearity	Avocado	500	2
	_		

Total Analyses per Lab 21

Narong has previously shipped both corn and soy with and without incurred residues to all participating ORA labs .KAN has carrots and ARL has avocados they will ship to participating labs. Each lab will receive ~ 100 g composite per matrix.

Lab	Contact	Address	Phone
PNW	Bill Cooke	22201 23rd DR SE, Bothell WA, 98021	(425) 487-5324
PSW	Eugene Chang	19701 Fairchild, Irvine, CA	(949) 608-2970
KAN	John Vonderbrink	11510 W 80th St, Lenexa, KS 66214	(913) 752-2703
ARL	Richard Thompson	3900 NCTR Road, Jefferson, AR 72079	(870) 543-4054
SRL	Narong Chamkasem	60 Eighth St NE, Atlanta, GA, 30309	(404) 253-2302
NRL	Claude Masse	158-15 Liberty Ave Jamaica NY 11433	(718) 340-7050

Action items

- 1. Purchase reagents and supplies all labs
 - a. Phenomenex Luna C8, 150 x 2 mm, 5 μm, Phenomenex 00F-4040-B0 or Phenomenex Luna C8, 150 x 4.6 mm, 5 μm, Phenomenex 00F-4040-E0 (pic attached)
 - b. Phenomenex guard column KrudKatcher P/N AFO-8497
 - c. Glyphosate isotope
 - d. Glufosinate isotope
 - e. Tetrabutylammonium hydroxide titrant, 0.4 M in Water, HPLC Grade, ACROS Organics (pic attached)
 - f. Tetrabutylammonium acetate, Aldrich No. 335991-10G (pic attached)
 - g. N-acetyl-glyphosate
- 2. Ship collaboration matrices
 - a. KAN ships 100 g carrots

- b. ARL ships 100 g avocados3. LA validates method and submits validation report for review4. All labs set up LA LC-MS/MS method on AB 5500 or 6500

A. Reagents and Supplies

- 1. Acetonitrile, HPLC grade
- 2. Petroleum ether
- 3. Methylene chloride
- 4. Water, HPLC grade
- 5. Formic acid, 98% solution
- 6. Acetic acid
- 7. Ammonium formate
- 8. Ethylenediaminetetraacetic acid disodium salt (Na₂EDTA)
- 9. Tetrabutylammonium hydroxide (TBAOH) titrant, 0.4 M in Water, HPLC Grade, ACROS Organics
- 10. Tetrabutylammonium acetate (TBuAA), Aldrich No. 335991-10G (optional)
- 11. Tetrabutylammonium acetate 1 M (TBuAA 1M), Aldrich No. 401803 50 ML (optional)
- 12. 50-mL plastic centrifuge tubes
- 13. Filter, 2 µm, 25 mm,
- 14. Waters Oasis HLB SPE, 60 mg, 3cc, 30 µm
- 15. Extraction solvent (50 mM acetic acid/10 mM Na₂EDTA): mix 2.9 mL acetic acid and 3.7 g Na₂EDTA in 200-mL of purified water.
- 16. 50 ng/ml IS fortified extraction solvent: dilute IS 20 μg/ml mixed isotope internal standard, prepared in step C.2.a, 1:400 using extraction solvent, prepared in step A.15, e.g. 2.5 ml (IS 20 μg/ml) to 1000 ml extraction solvent
- 17. Mobile phase A (4 mM tetrabutylammonium formate)
 - a. Add 10.0 ml of 0.4 M TBAOH to ~900 mL HPLC water, and adjust the pH to 2.8±0.05 using formic acid (~ 3 ml). OR
 - b. Add 1.20 g TBA acetate in 1 L HPLC water; and adjust the pH to 2.8±0.05 using formic acid (~2 mL). OR
 - c. 4 ml 1M TBuAA in 1 L HPLC water; and adjust the pH to 2.8±0.05 using formic acid (~2 mL).

B. Standard Reference Materials

- 1. Glyphosate
- 2. Glufosinate
- 3. AMPA
- 4. N-acetyl-glyphosate, available from EPA and Toronto Research Chemicals (TRC No A178245)
- 5. Glyphosate-¹³C
- 6. Glufosinate- D^3

C. Standard Solutions

- 1. General instructions
 - a. Unless otherwise indicated prepare standards in DI water
 - b. Store standard solutions in plastic containers because glass can leach standard reference material from solution. Use of glass volumetric flasks for standard preparation is OK if solution is removed from the glassware after preparation.
 - c. Do not store standards prepared with water or aqueous media in the freezer.

- 2. Stock standards 1 mg/ml
 - a. Includes all native and isotopic standards listed in Section B
 - b. Prepare individual stock standard for each compound
- 3. Isotopic working solutions
 - a. IS 20 µg/ml mixed isotope internal standard
 - i) Combine isotopes Glyphosate-¹³C and Glufosinate-D³ (step B.5 & 6)
 - ii) Dilute 1 mg/ml stock isotope internal standards, prepared in step C.2, 1:50
- 4. Intermediate mixed standards
 - a. 50 µg/ml mixed native standard
 - i) Combine native 1 mg/ml stock standards, prepared in step C.2
 - ii) Include glyphosate, glufosinate, AMPA, and N-acetyl-glyphosate (Step B.1-4)
 - iii) Dilute 1:20
 - b. $5.0 \,\mu g/ml$ mixed native standard
 - i) Dilute 50 µg/ml mixed standard, prepared in step C.4.a, 1:10
 - c. $1.0 \,\mu g/ml$ mixed native standard
 - i) Dilute 50 μ g/ml mixed standard, prepared in step C.4.a, 1:50
- 5. LC-MS/MS calibration standard 50 ng/ml
 - a. Dilute 5.0 µg/ml mixed native standard, prepared in step C.4.b, 1:100, using 50 ng/ml IS fortified extraction solvent (A.16)

D. Equipment and Instrumentation

- 1. Genogrinder
- 2. Centrifuge
- 3. Pipettes
- 4. LC-MS/MS
 - a. Shimadzu HPLC system: two LC-20AD pumps, Sil-20AC autosampler, CTO-20AC column oven

NOTE: Replace all metal LC tubing with PEEK tubing between the autosampler and injection valve because glyphosate can be retained on metal surfaces.

- b. AB model 5500, or 6500, Q-TRAP mass spectrometer
- c. HPLC column: Phenomenex Luna C8(2), 100 Å, 5 μm , 150 x 4.6 mm, Phenomenex 00F-4249-E0
- d. HPLC guard column: Phenomenex guard column KrudKatcher P/N AFO-8497

NOTE: Install peek tubing between the autosampler and column because metal can affect glyphosate and glufosinate chromatography

E. Extraction Procedure

- 5 g sample + 25 ml 50 ng/ml IS fortified extraction solvent prepared in step A.15 For dry products containing less than 50 % moisture: 2 g sample plus 10 ml 50 ng/ml IS fortified extraction solvent prepared in step A.15 for dry products
- 2. Add 10 ml PE or MeCl₂ as needed for fatty or dirty matrices
- 3. Shake @ 1000 for 10 min
- 4. Centrifuge at \geq 3000 rpm for 5 min
- 5. Filter aqueous extract thru HLB SPE cartridge
- 6. Filter for injection (could be included with SPE step)

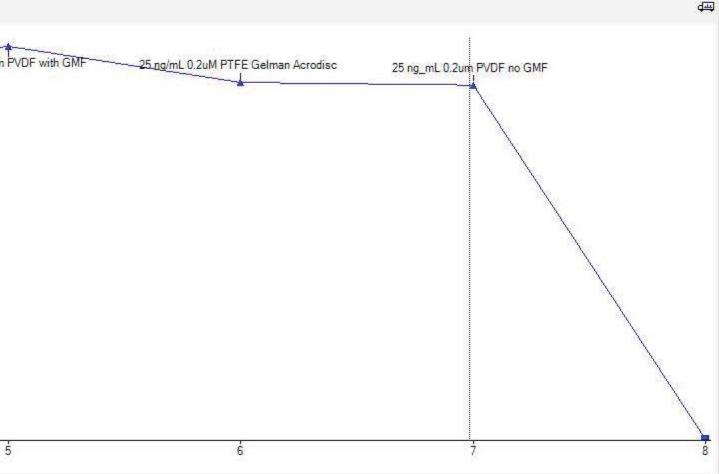
7. Sample concentration: 0.2 g/ml

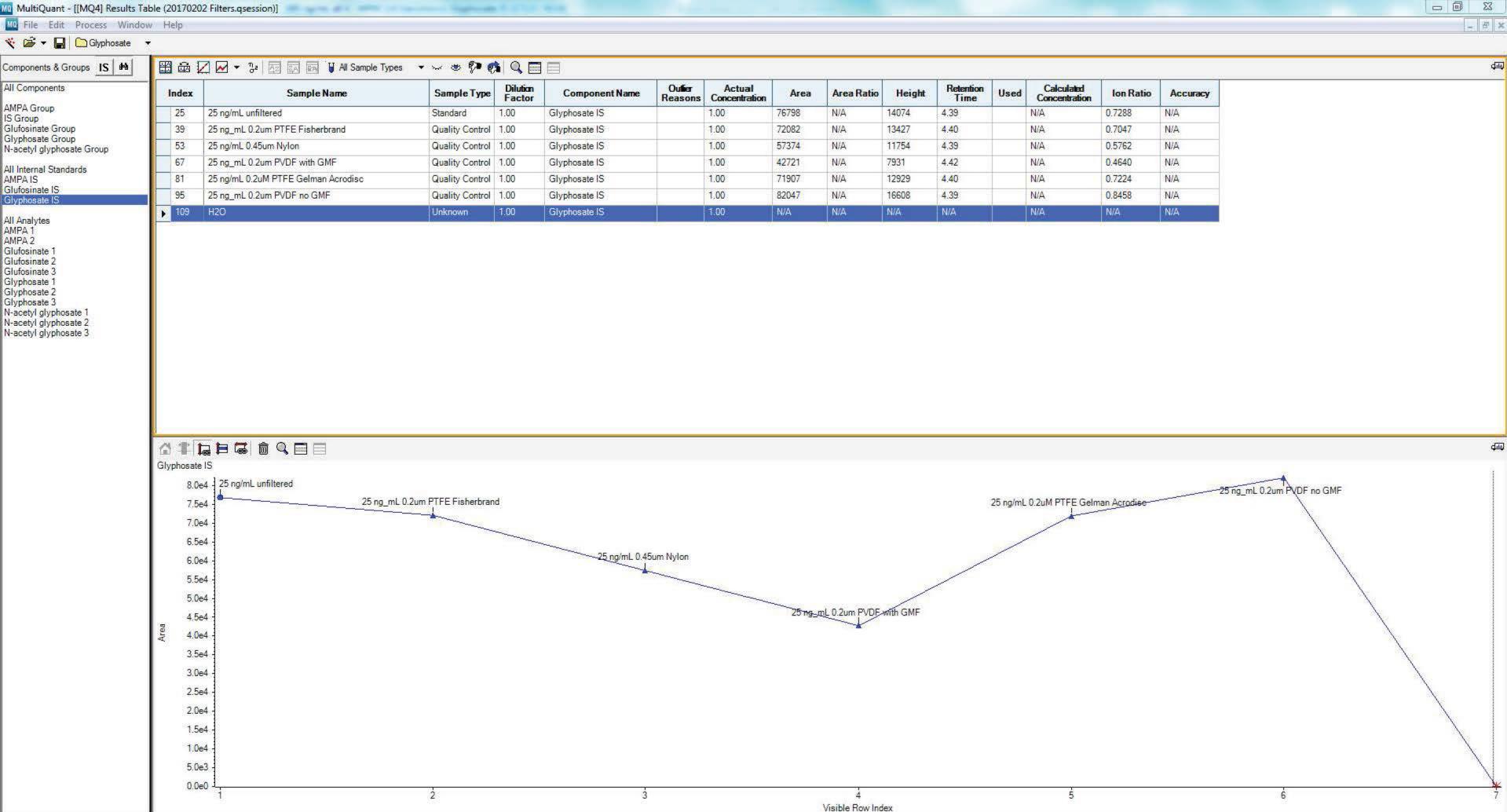
F. LC-MS/MS method

	LC Parameters	Gra	dient
Column:	Phenomenex Luna C8(2), 150 x 4.6 mm, 5 µm OR Phenomenex Luna C8, 150 x 2 mm, 5 µm, with Phenomenex KrudKatcher guard column	<u>Time</u>	<u>MPB</u>
MP A:	4 mM tetrabutlyammonium formate + 0.1 % formic acid in water (pH 2.8 ± 0.05)	0.00	5
MP B:	MeCN	1.00	5
Flow:	0.45 mL/min (4.6 mm column)	5.00	90
	0.3 mL/min (2.0 mm column)	7.00	90
Inj Vol:	10 µL	8.00	5
Temp	40 °C	14.00	5

MS/MS Parameters (5500 & 6500)

Q1	Q3	RT	Transition	DP	EP	CE	CXP
110	63	2.5	AMPA 1	-40	-11	-30	-9
110	79	2.5	AMPA 2	-40	-11	-34	-9
110	81	2.5	AMPA 3	-40	-11	-34	-9
112	63	2.5	AMPA IS	-60	-11	-26	-9
180	63	4.0	Glufosinate 1	-60	-11	-66	-9
180	95	4.0	Glufosinate 2	-40	-11	-19	-5
180	85	4.0	Glufosinate 3	-60	-11	-25	-9
183	63	4.0	Glufosinate IS	-60	-11	-40	-9
168	63	5.0	Glyphosate 1	-30	-11	-28	-9
168	79	5.0	Glyphosate 2	-30	-11	-56	-9
168	150	5.0	Glyphosate 3	-30	-11	-16	-9
171	63	5.0	Glyphosate IS	-30	-11	-28	-9
b		(5	5)				


MS ParametersCUR000CADMEDIUM


- **IS** -4000
- **GAS 1** 65
- GAS 2 65
 - **TEM** 450 °C (6500) 650 °C (5500)
 - Q1 UNIT
 - Q3 UNIT

Level (ng/g)	Spk Added (ng)	Spk Std Conc (µg/ml)	Spk Vol Added (μl)	Std Dilution* (ml)	Cal Std Conc (ng/ml)
	Corn	2	g		
50	100	1	100	10	10
200	400	5	80	10	40
500	1000	5	200	10	100
Carrot/A	lvocado	5	g		
50	250	5	50	25	10
200	1000	5	200	25	40
500	2500	50	50	25	100

*Dilute with control matrix extract

	😤 👻 🔲 🗋 Glyphosate	dow Help															
Concentration Name Sample from Sample from Factor Concentration Actor Concentration Name Sample from Sample from<		*															
Algos Total State State <th< th=""><th>onents & Groups IS 🗚</th><th></th><th>🖌 👻 况 🖾 📾 🕌 All Sample Typ</th><th>ies 🔹 🛩 🤓 🖓 🍕</th><th>¢ Q E</th><th></th><th></th><th></th><th></th><th></th><th></th><th>9</th><th></th><th></th><th>o</th><th></th><th></th></th<>	onents & Groups IS 🗚		🖌 👻 况 🖾 📾 🕌 All Sample Typ	ies 🔹 🛩 🤓 🖓 🍕	¢ Q E							9			o		
Outcome Top State also Outcome Top State also Outcome Top State also Number of the state also Number of t		Index	Sample Name	Sample Type	Dilution Factor	Component Name	Outlier Reasons	Actual Concentration	Area	Area Ratio	Height	Retention Time	Used (Calculated Concentration	Ion Ratio	Accuracy	
1 2 3 hyper, utilized by grades 3 hyper, utilized by grads 3 hyper, utilized by grads	Group	7 Slv	/nt Blank	Unknown	State State State State	Glufosinate IS	De la constance		58358	N/A	6146	A Contract O		and the second	1.3347	N/A	
	sinate Group	21 25	ng/mL unfiltered	Standard	1.00	Glufosinate IS		1.00	218774	N/A	19324	3.31	N/	A	2.0761	N/A	
Import State (Line) 25 regine C 65m Myde Outling C cmm ⁻¹ (to 0) Outling C cmm ⁻¹ (to 0) Outling C cmm ⁻¹ (to 0) NA 231 NA 2300 NA State (Line) 23 regine C 35m Myde Outling C cmm ⁻¹ (to 0) Outling C cm ⁻¹ (to 0)<	osate Group etyl glyphosate Group	35 25	ng_mL 0.2um PTFE Fisherbrand	Quality Control	1.00	Glufosinate IS		1.00	220180	N/A	19654	3.31	N/	A	2.1525	N/A	
2:85 0:1 35 mg/L 12 m PC who 3F Quarky Compt 10:0	ternal Standards			Quality Control	1.00	A REAL OF COMPANY STAT		1.5.222	1.1920.00220.001	122035	220202	1222023	N/		1997-1992	N/A	
Matrix Image: Classer MCP (no.0046 Display (Classer MCP (no.0046 <thdisplay (classer="" (no.004<="" mcp="" td=""><td>(IS</td><td>63 25</td><td>ng_mL 0.2um PVDF with GMF</td><td>Quality Control</td><td>1.00</td><td>Glufosinate IS</td><td></td><td>1.00</td><td>227071</td><td>N/A</td><td>18839</td><td>3.55</td><td>NZ.</td><td>A</td><td>2.4660</td><td>N/A</td><td></td></thdisplay>	(IS	63 25	ng_mL 0.2um PVDF with GMF	Quality Control	1.00	Glufosinate IS		1.00	227071	N/A	18839	3.55	NZ.	A	2.4660	N/A	
Vision 11 27 mg/th 20mm/0F vo 05% Guaday Contex 100 201/22 NA 10002 3.31 NA NA 39 39 10 100 201/22 NA 10002 3.31 NA	sinate IS tosate IS	77 25	ng/mL 0.2uM PTFE Gelman Acrodisc	Quality Control	1.00	Glufosinate IS		1.00	206237	N/A	18226	3.32	N/	Ά	2.0719	N/A	
Carteria 0 Carteria0 Carteria0 Carteria0		91 25	ng_mL 0.2um PVDF no GMF	Quality Control	1.00	Glufosinate IS		1.00	204722	N/A	18059	3.31	N/	Ά	2.1105	N/A	
Carteria 0 Carteria0 Carteria0 Carteria0	A 1	105 H2/	0	Unknown	1.00	Glufosinate IS		1.00	N/A	N/A	N/A	N/A	N/	A	N/A	N/A	
Gludosinea IS 25 rg/mL, unilitered 25 rg/mL, 0.2um PTFE Fisherbrand 25 rg/mL, 0.2um PVDF with GMF 25 rg/mL, 0.2um PVDF wo GMF 2 k65 2 k65 <td< th=""><th>hosate 2 hosate 3 etyl glyphosate 1 etyl glyphosate 2</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	hosate 2 hosate 3 etyl glyphosate 1 etyl glyphosate 2																
GL/Gosines IS 25 ng.mL 0.2um PTE Fisherbrand 25 ng.mL 0.2um PTE Fisherbrand 25 ng.mL 0.2um PVF with GME 25 ng.mL 0.2um PVF and GME 25 ng.mL 0.2um PVF no GME 25 ng.mL 0.2um PVF no GME 1265 1565 1565 1565 1565 1565 1565 1565																	
2245 2245 2045 1345 1345 1345 1345 1345 1345 1345 13				/ml_unfiltered	25 nc	m 102um PTFF Fisherbrar	nd	25 Iml 0.4	5 Ni Jao								
2005 1965 1965 1765 1765 1565 1565 1565 1465 1465 1465 1465 1065 9064 8064 7065 9064 8064 7065 9064 8064 5064 4064 1065			20 ngn		20 hg		na	25 ng/mL 0.4	5um Nylon		25 ng_mL 0.2	um PVDF with (GMF		UM PTFE Gelm	an Acrodisc 25	ng_mL 0.2um PVDF no GMF
1865 1765 1765 1866 1867 1868 1864 1864 1864 1864 1864 1864 <t< td=""><td></td><td>2.0e5 -</td><td>1</td><td>e de la companya de la</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		2.0e5 -	1	e de la companya de la													
1.745 1.645 1.845		1.9e5 -	/														
1565 1265 1265 1265 1265 1265 1265 1065 9064 9064 1065 9064 1065 1064			1														
1.5e5 1.4e5 1.2e5 1.2e5 1.0e5 9.0e4 8.0e4 8.0e4 5.0e4 5.0e4 4.0e4 3.0e4 3.0e4 2.0e4 1.0e4																	
14e5 13e5 13e5 13e5 11e5 10e5 90e4 80e4 70e4 50e4 40e4 30e4 20e4 10e5			1														
1.2e5 1.1e5 1.0e5 9.0e4 8.0e4 7.0e4 5.0e4 6.0e4 4.0e4 3.0e4 2.0e4 1.0e4		1.4e5															X
 ↓ 11e5 - 10e5 - 90e4 - 80e4 - 70e4 - 50e4 - 40e4 - 30e4 - 30e4 - 10e4 - 																	X
1.0e5 9.0e4 8.0e4 7.0e4 5.0e4 4.0e4 4.0e4 2.0e4 1.0e4		- CO															X
9.0e4 8.0e4 7.0e4 5.0e4 5.0e4 4.0e4 3.0e4 2.0e4 1.0e4			1														χ.
8.0e4 7.0e4 6.0e4 5.0e4 4.0e4 3.0e4 2.0e4 1.0e4			1														
7.0e4 Stynt Blank 6.0e4		100 March 100 Ma	1														× ×
6.0e4 - 5.0e4 - 3.0e4 - 2.0e4 - 1.0e4 -		7.0e4 - s	Slynt Blank														
4.0e4 - 3.0e4 - 2.0e4 - 1.0e4 -																	
3.0e4 - 2.0e4 - 1.0e4 -		100 CONTRACTOR 100 CONTRA															
2.0e4 - 1.0e4 -		5.0e4															
1.0e4		5.0e4 4.0e4															
		5.0e4 4.0e4 3.0e4															
		5.0e4 4.0e4 3.0e4 2.0e4															

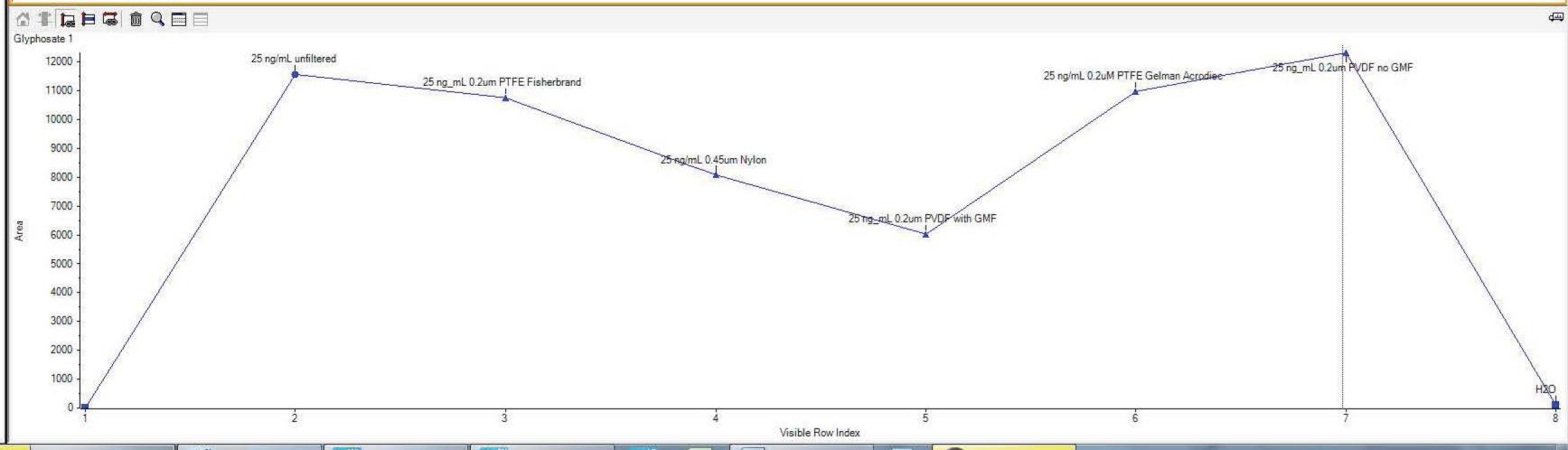
	0	Σ	3
		一百	×

Retention Time	Used	Calculated Concentration	Ion Ratio	Accuracy
4.39		N/A	0.7288	N/A
4.40		N/A	0.7047	N/A
4.39		N/A	0.5762	N/A
4.42		N/A	0.4640	N/A
4.40		N/A	0.7224	N/A
4.39		N/A	0.8458	N/A
N/A		N/A	N/A	N/A

MQ File Edit Process Window Help

👻 🗃 🖌 🔚 🗀 Glyphosate 🛛 🔻

Components & Groups	IS	44

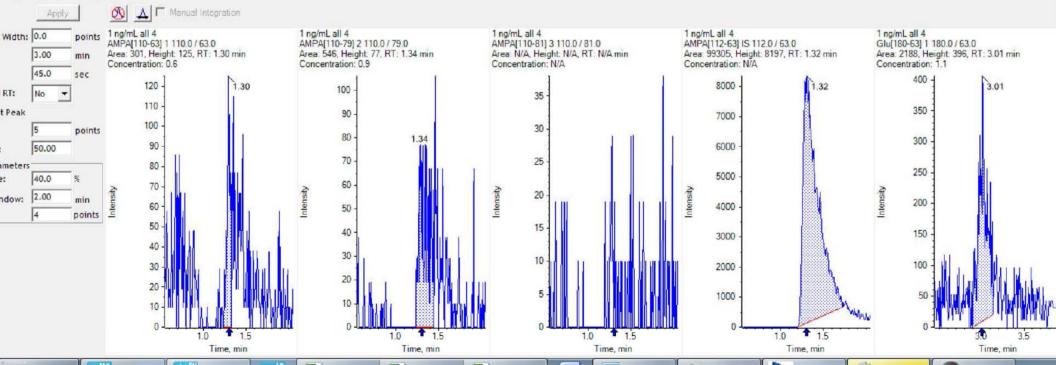

All Components AMPA Group IS Group Glufosinate Group Glyphosate Group N-acetyl glyphosate Group

All Internal Standards AMPA IS Glufosinate IS Glyphosate IS

All Analytes AMPA 1 AMPA 2 Glufosinate 1 Glufosinate 2 Glufosinate 3

Glyphosate 3 Glyphosate 1 Glyphosate 2 Glyphosate 3 N-acetyl glyphosate 1 N-acetyl glyphosate 2 N-acetyl glyphosate 3

In	ndex	Sample Name	Sample Type	Dilution Factor	Component Name	Outier Reasons	Actual Concentration	Area	Area Ratio	Height	Retention Time	Used	Calculated Concentration	Ion Ratio	Accuracy
1	8	Slvnt Blank	Unknown	1.00	Glyphosate 1	Ion Ratio	N/A	N/A	N/A	N/A	N/A	V	N/A	N/A	N/A
	22	25 ng/mL unfiltered	Standard	1.00	Glyphosate 1		25.00	11570	1.507e-1	2085	4.39	V	25.0	1.0000	100.00
	36	25 ng_mL 0.2um PTFE Fisherbrand	Quality Control	1.00	Glyphosate 1		25.00	10760	1.493e-1	1975	4.40	7	24.8	1.0000	99.08
	50	25 ng/mL 0.45um Nylon	Quality Control	1.00	Glyphosate 1		25.00	8081	1.409e-1	1647	4.39	V	23.4	1.0000	93.49
0	64	25 ng_mL 0.2um PVDF with GMF	Quality Control	1.00	Glyphosate 1		25.00	6031	1.412e-1	1158	4.42	1	23.4	1.0000	93.70
13	78	25 ng/mL 0.2uM PTFE Gelman Acrodisc	Quality Control	1.00	Glyphosate 1		25.00	10978	1.527e-1	1911	4.41	V	25.3	1.0000	101.33
ľ	92	25 ng_mL 0.2um PVDF no GMF	Quality Control	1.00	Glyphosate 1		25.00	12319	1.501e-1	2393	4.40	V	24.9	1.0000	99.66
	106	H2O	Unknown	1.00	Glyphosate 1	Ion Ratio	N/A	98	N/A	51	4.41	V	N/A	1.0000	N/A


	0		23	
		÷	2	×

4-4

🔹 🖓 📅 ன 🔰 Standards 🔹 😔 🐲 🦚 🔍 🥅 🔤

Sample Name	Sample Type	Dilution Factor	Component Name	Area	IS Area	Height	Retention Time	Actual Concentration	Calculated Concentration	Ion Ratio	Accuracy	Mass Info	Area Ratio
mL all 4	Standard	1.00	N-acetyl[210-63] 1	319	694650	147	5.31	5.00	4.8	1.0000	95.55	210.0/63.0	4.593e-4
nL all 4	Standard	1.00	N-acetyl[210-124] 2	5321	694650	511	5.37	5.00	17.8	16.6767	355.36	210.0 / 124.0	7.660e-3
mL all 4	Standard	1.00	N-acetyl[210-79] 3	44	694650	52	5.32	5.00	1.3	0.1384	25.88	210.0/79.0	6.359e-5
/mL all 4	Standard	1.00	AMPA[110-63] 1	5955	114829	509	1.32	10.00	10.4	1.0000	103.74	110.0 / 63.0	5.186e-2
'mL all 4	Standard	1.00	AMPA[110-79] 2	9119	114829	730	1.32	10.00	12.7	1.5314	126.95	110.0 / 79.0	7.941e-2
mL all 4	Standard	1.00	AMPA[110-81] 3	93	114829	86	1.37	10.00	16.9	0.0157	168.51	110.0/81.0	8.134e-4
mL all 4	Standard	1.00	AMPA[112-63] IS	114829	N/A	8315	1.33	1.00	N/A	1.0000	N/A	112.0/63.0	N/A
mL all 4	Standard	1.00	Glu[180-63] 1	20528	275947	2097	3.02	10.00	10.1	1.0000	101.22	180.0 / 63.0	7.439e-2
'mL all 4	Standard	1.00	Glu[180-95] 2	32851	275947	3654	3.02	10.00	9.8	1.6003	97.55	180.0 / 95.0	1.190e-1
/mL all 4	Standard	1.00	Glu[180-85] 3	34850	275947	3590	3.02	10.00	9.9	1.6977	99.01	180.0 / 85.0	1.263e-1
/mL all 4	Standard	1.00	Glu[183-63] IS	275947	N/A	26823	3.00	1.00	N/A	2.4031	N/A	183.0 / 63.0	N/A
mL all 4	Standard	1.00	Gly[168-63] 1	73454	719436	16172	4.43	10.00	10.1	1.0000	100.64	168.0 / 63.0	1.021e-1
/mLali 4	Standard	1.00	Gly[168-79] 2	59409	719436	12717	4.42	10.00	9.5	0.8088	94.79	168.0 / 79.0	8.258e-2
/mL all 4	Standard	1.00	Gly[168-150] 3	327687	719436	68943	4.42	10.00	9.5	4.4611	95.24	168.0 / 150.0	4.555e-1
'mL all 4	Standard	1.00	Gly[171-63] IS	719436	N/A	151921	4.42	1.00	N/A	6.2653	N/A	171.0/63.0	N/A
mL all 4	Standard	1.00	N-acetyl[210-63] 1	572	719436	241	5.34	10.00	8.3	1.0000	82.64	210.0/63.0	7.946e-4
mL all 4	Standard	1.00	N-acetyl[210-124] 2	210	719436	87	5.25	10.00	0.7	0.3681	6.78	210.0 / 124.0	2.925e-4
mL all 4	Standard	1.00	N-acetyl[210-79] 3	163	719436	123	5.31	10.00	4.6	0.2846	46.02	210.0 / 79.0	2.261e-4
mL all 4	Standard	1.00	AMPA[110-63] 1	33539	109430	2589	1.33	50.00	61.3	1.0000	122.63	110.0/63.0	3.065e-1
mL all 4	Standard	1.00	AMPA[110-79] 2	41783	109430	3631	1.32	50,00	61.0	1.2458	122.08	110.0 / 79.0	3.818e-1

🗜 🔍 🏛 🔍 🗖 🗖

Multi-Laboratory Collaborative Study Validation Plan: Quantification of Sulfites in Foods and Drink Samples

Validation Study Point of Contact (POC):

Katherine Robbins FDA/CFSAN/ORS/DAC/MDB 240-402-1835 katherine.robbins@fda.hhs.gov

Method POC:

Katherine Robbins FDA/CFSAN/ORS/DAC/MDB 240-402-1835 katherine.robbins@fda.hhs.gov

Scope:

This validation plan outlines a collaborative study that follows a level four validation as outlined in the FDA's *Guidelines for the Validation of Chemical Methods for the FDA Foods Program*. This validation level is equivalent to a full AOAC Collaborative study. This validation level was chosen since it is expected that the use of this methods will be widespread, long term and of high public visibility. A level two single laboratory validation was completed and published in *Journal of Agricultural and Food Chemistry* in the spring of 2015.

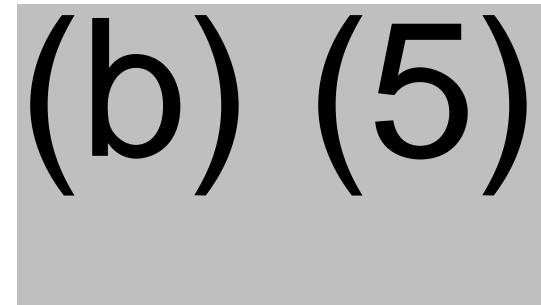
This collaborative study will test the performance of an LC-MS/MS method for the quantitation of sulfites in a wide range of food products. Sulfites are a family of food preservative which can cause severe allergic-like reactions in sensitive individuals. As a result, the U.S. FDA requires that sulfite be listed on the label of any food product containing more than 10 ppm sulfite (measured as sulfur dioxide). ^{1, 2}

Method:

The multilaboratory validation study will test the performance of a method that was published by Robbins *et al.* in the *Journal of Agricultural and Food Chemistry* in 2015. This method uses electrospray ionization (ESI) liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the determination of sulfite in various food matrices. The matrix is extracted with a buffered formaldehyde solution, converting free and reversibly bound sulfite to the stable formaldehyde adduct, hydroxymethylsulfonate (HMS). Extracts are prepared for injection using a C18 SPE cartridge to remove any lipophilic compounds. HMS is then separated from other matrix components using hydrophilic interaction chromatography (HILIC) and detected using multiple reaction monitoring (MRM). Slight modifications in the sample preparation steps were made for liquids and dried vegetables.

Potential Participating Labs:

- CFSAN
- FCC
- Denver (ORA)
- New York (ORA)
- Irvine (ORA)
- San Francisco (ORA-no QQQ)
- Florida Department of Agriculture (FERN)
- New York Department of Agriculture (FERN)
- Minnesota Department of Agriculture (FERN)


Study Design:

The validation study will consist of two parts starting with training and proficiency samples followed by the actual collaborative samples. In the initial stage of the study, laboratories will be provided with an excess of a standard solution to be used to ensure the LC-MS system is suitable for the analysis. Two spiked samples (one liquid and one solid) will be analyzed in duplicate to prove the analyst has proficiency with the method. After this preliminary evaluation is successfully completed, the collaborative study samples will be sent. Four different representative matrices will be spiked with varying concentrations of Na₂SO₃. Table 1 outlines these samples as well as if any modifications will be required for that sample. Three commercially sulfited samples will also be analyzed. All samples will be analyzed as blind duplicates.

Participating laboratories will receive the S^{34} -sodium sulfite internal standard stock solution (IS), a stock solution of sodium sulfite, the analytical column, and the SPE cartridges to be used throughout both phases of the experiment. The spiked samples will include a matrix blank with sodium sulfite added at three concentrations to best represent the concentrations usually encountered in those matrices. The liquid sample, white grape juice, will be spiked at 0x, 1/2x, 1x, and 2x the regulatory labeling threshold level of 10 ppm SO₂.

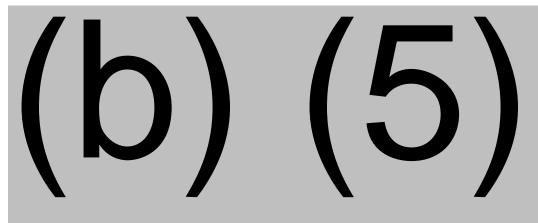
Instructions for Participating Laboratories:

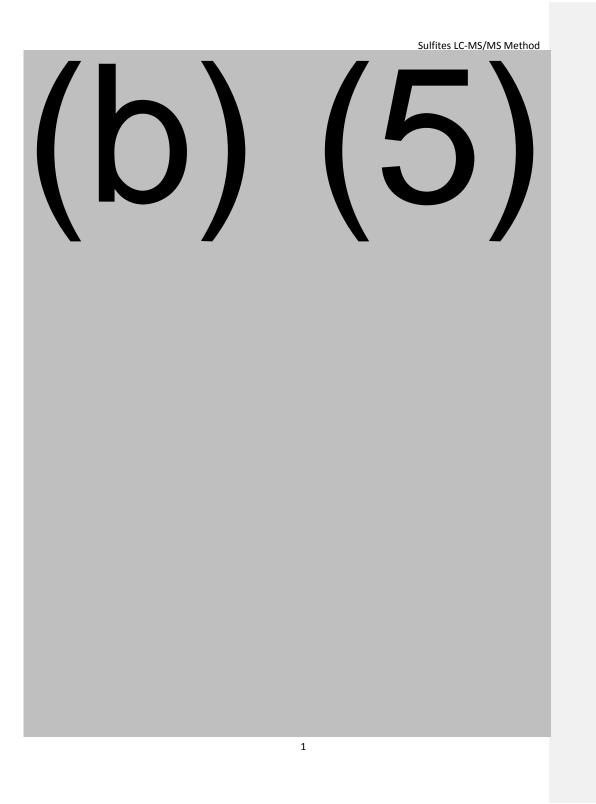
- 1. Once the training samples have arrived, begin familiarizing yourself with the procedures and instrumentation of the method. The initial training solution will be provided in excess to allow for multiple analyses.
- 2. Follow the method procedures carefully. Ensure that good laboratory practices are followed. This is a study of the method, not of the laboratory. The method must be followed as closely as possible and any deviations from the method must be recorded and reported to the study point of contact.

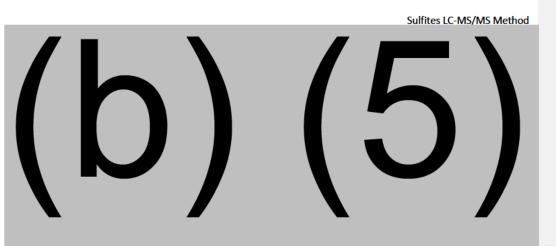
(b) (5) Recommended Analysis Schedule:

(b) (5)

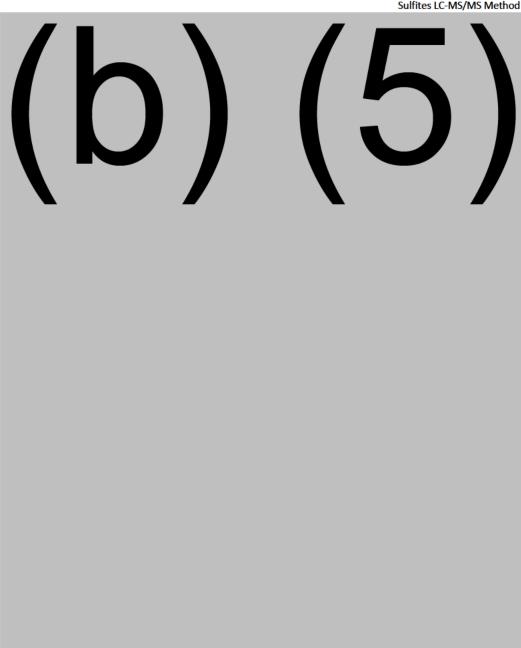
Reporting:

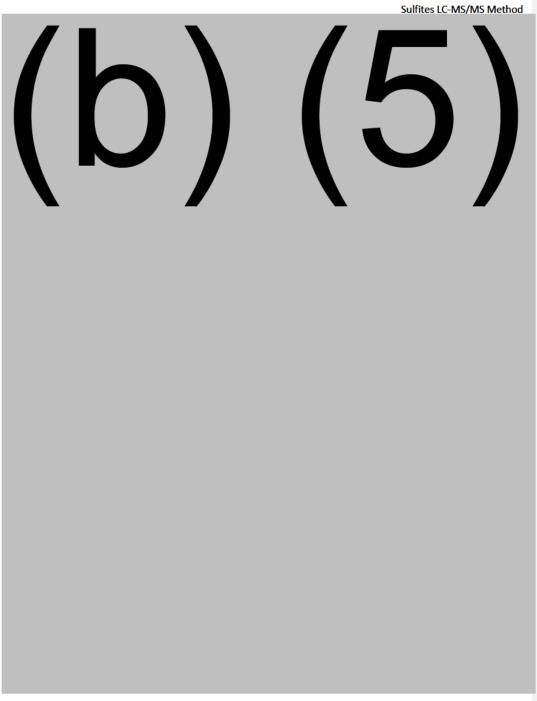

All data reports are entered into the Sulfite Data Template Excel workbook. The completed excel workbook should be sent to the Validation Study POC. In addition, copies of all chromatograms should be sent to the POC as well.

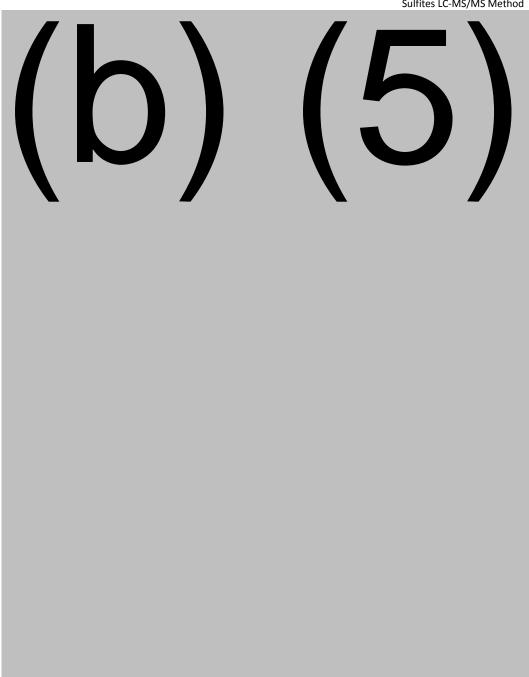

References:

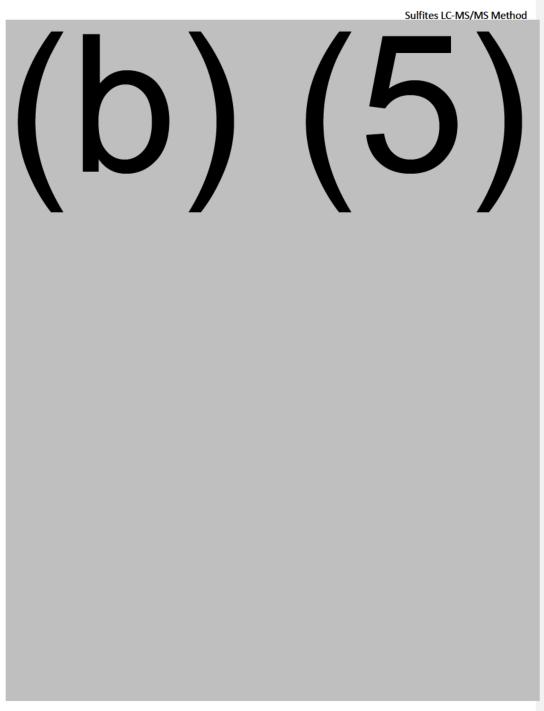

- 1. U.S. Food and Drug Administration, Fed. Regist. 1986, 51, 25012-25020.
- 2. U.S. Food and Drug Administration, Fed. Regist. 1986, 51, 25021-25026.

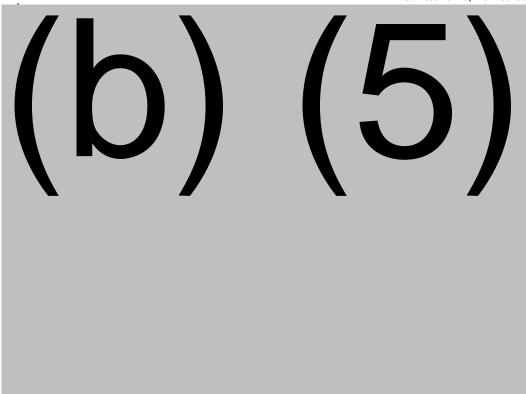
Sulfites Validation Plan January 13, 2016

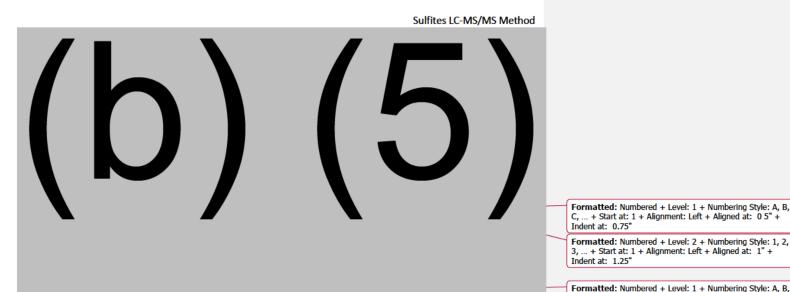

Table 1: Multi laboratory Validation Samples

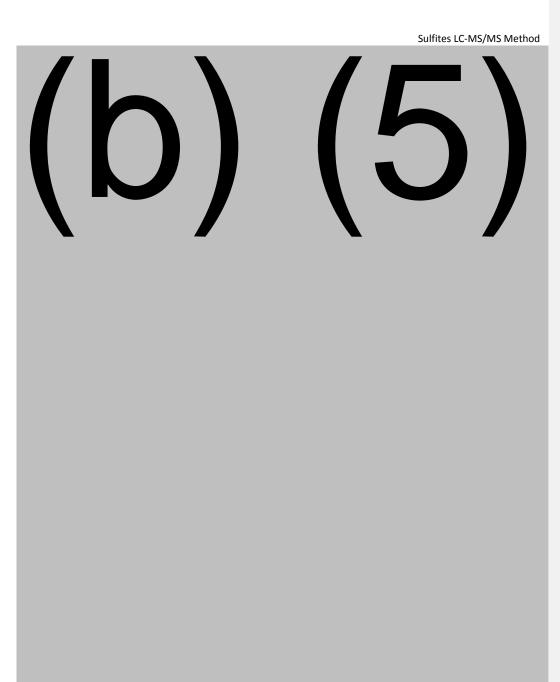


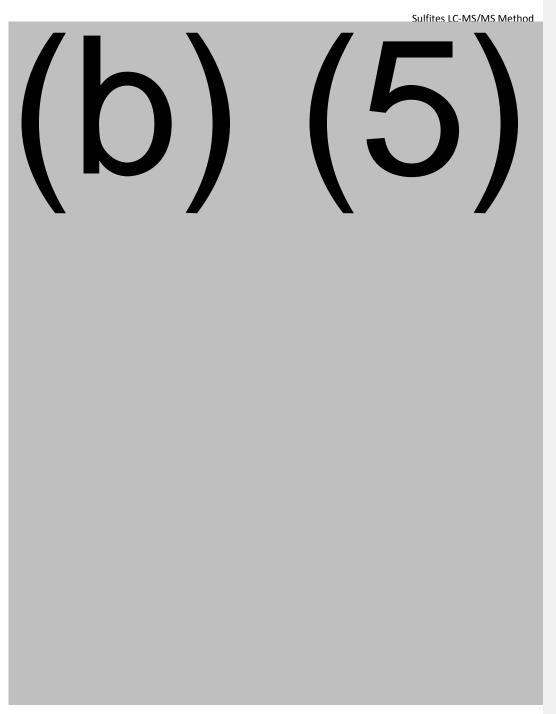


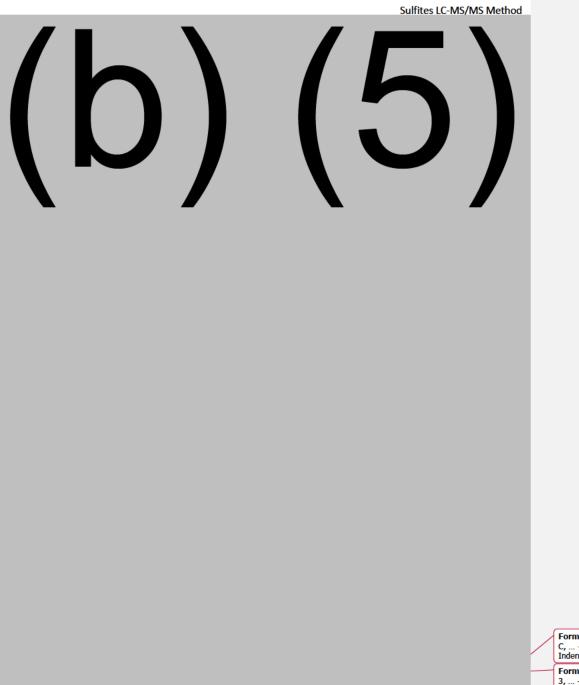

Formatted: Indent: Left: 0.63", No bullets or numbering




Sulfites LC-MS/MS Method


7


Sulfites LC-MS/MS Method

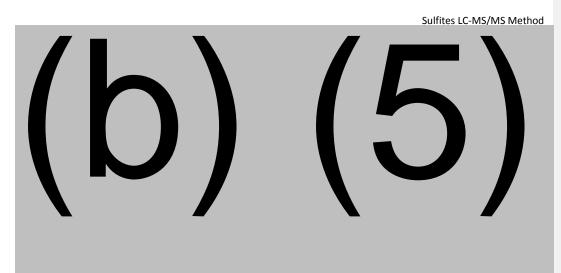


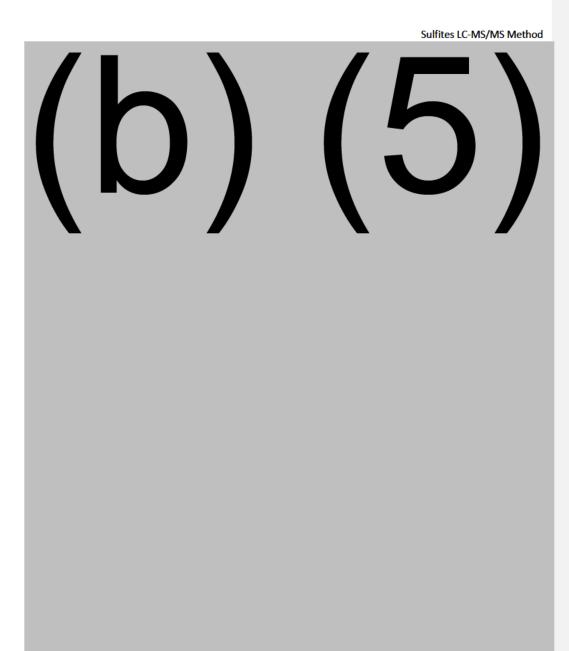
Formatted: Numbered + Level: 1 + Numbering Style: A, B, C, ... + Start at: 1 + Alignment: Left + Aligned at: 05" + Indent at: 0.75"

Formatted: Numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 1" + Indent at: 1.25"

Formatted: Numbered + Level: 1 + Numbering Style: A, B, C, ... + Start at: 1 + Alignment: Left + Aligned at: 0 5" + Indent at: 0.75"

Formatted: Numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 1" + Indent at: 1.25"




Formatted: Numbered + Level: 1 + Numbering Style: A, B, C, ... + Start at: 1 + Alignment: Left + Aligned at: 0 5" + Indent at: 0.75"

Formatted: Numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 1" + Indent at: 1.25"

Formatted: Numbered + Level: 1 + Numbering Style: A, B, C, ... + Start at: 1 + Alignment: Left + Aligned at: 0 5" + Indent at: 0.75"

Formatted: Numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 1" + Indent at: 1.25"

^{Sulfites LC-MS/MS Method}

Matrices: Corn (dry) Carrot (wet) Avocado (fat)

Analyses:	Fortification Study		
(per matrix)	Level	Ν	
	Control	2	
	Spike 50	2	
	Spike 250	2	
	Spike 500	2	

Incurred Residues				
Matrix	Level			
Corn Soybean	40 ng/g 4.5 μg/g			

Standards:	Calibration Standards in Solvent			Matrix Calibration Standards				
	Std Conc (ng/ml)	Spk Std ¹ Conc (µg/ml)	Spk Std Volume Added (µl)	Dilution ² Volume (ml)	Std Conc (ng/ml)	Spk Std ¹ Conc (µg/ml)	Spk Std Volume Added (µl)	Dilution ³ Volume (ml)
	corn (2 g sample)							
	10	1	100	10	10	1	40	4
	50	5	100	10	50	5	40	4
	100	5	200	10	100	5	80	4
	carrot/avocado (5 g sample)							
	10	5	50	25	10	1	100	10
	50	5	250	25	50	5	100	10
	100	50	50	25	100	50	20	10

¹ Prepare mixed native standards as directed in method step C.4

² Dilute with 50 ng/ml IS fortified extraction solvent

³ Dilute with control sample matrix

Fortification:	Spike Level (ng/g)	Spk Std ¹ Conc (µg/ml)	Spk Std Volume Added (µl)			
	corn (2 g	sample)				
	50	1	100			
	250	5	100			
	500	5	200			
	carrot/avocado (5 g sample)					
	50	50				
	250	5	250			
	500	50	50			
LCMS Transitions:	AMPA[11	0-63] 1				
	AMPA[110-79] 2					
	AMPA[110-81] 3					
	Glu[180-63] 1					
	Glu[180-95] 2					

Glu[183-63] IS Gly[168-63] 1 Gly[168-79] 2 Gly[168-150] 3 Gly[171-63] IS N-acetyl[210-63] 1 N-acetyl[210-124] 2 N-acetyl[210-79] 3

Glu[180-85] 3

LCMS Calibration: Single level calibration for each spike level

Internal standard calibration: Glyphosate & Glufosinate External standard calibration: AMPA & N-acetyl-glyphosate

Inj Sequence: Group by spike level

Description	Sample Name	Sample Type	Concentration

	· · · · · · · · · · · · · · · · · · ·		
<u>50 ng/g spike level</u>			
10 ng/ml calibration std in solvent	CalStd10	Standard	50
10 ng/ml calibration std in solvent	CalStd10	Standard	50
10 ng/ml corn matrix calibration std	MatStd10 Corn	Quality Control	50
Corn control	Control Corn	Unknown	
Corn spike 50 #1	Spk50-1 Corn	Quality Control	50
Corn spike 50 #2	Spk50-2 Corn	Quality Control	50
Corn incurred residue	Corn Incur	Unknown	
10 ng/ml corn matrix calibration std	MatStd10 Corn	Quality Control	50
10 ng/ml calibration std in solvent	CalStd10	Standard	50
10 ng/ml carrot matrix calibration std	MatStd10 Carrot	Quality Control	50
Carrot control	Control Carrot	Unknown	50
Carrot spike 50 #1	Spk50-1 Carrot	Quality Control	50
Carrot spike 50 #2	Spk50-2 Carrot	Quality Control	50
10 ng/ml carrot matrix calibration std 10 ng/ml calibration std in solvent	MatStd10 Carrot CalStd10	Quality Control Standard	50 50
10 ng/ml avocado matrix calibration std	MatStd10 Avocado		50
Avocado control	Control Avocado	Quality Control Unknown	30
Avocado spike 50 #1	Spk50-1 Avocado	Quality Control	50
Avocado spike 50 #2	Spk50-2 Avacado	Quality Control	50
10 ng/ml avocado matrix calibration std	MatStd10 Avocado	Quality Control	50
10 ng/ml calibration std in solvent	CalStd10	Standard	50
-			
<u>250 ng/g spike level</u>		Ctondord	250
50 ng/ml calibration std in solvent	CalStd50	Standard Standard	250
50 ng/ml calibration std in solvent 50 ng/ml corn matrix calibration std	CalStd50 MatStd50 Corn		250 250
Corn spike 250 #1	Spk250-1 Corn	Quality Control Quality Control	250
Corn spike 250 #2	Spk250-2 Corn	Quality Control	250
50 ng/ml corn matrix calibration std	MatStd50 Corn	Quality Control	250
50 ng/ml calibration std in solvent	CalStd50	Standard	250
50 ng/ml carrot matrix calibration std	MatStd50 Carrot	Quality Control	250
Carrot spike 250 #1	Spk250-1 Carrot	Quality Control	250
Carrot spike 250 #2	Spk250-2 Carrot	Quality Control	250
50 ng/ml carrot matrix calibration std	MatStd50 Carrot	Quality Control	250
50 ng/ml calibration std in solvent	CalStd50	Standard	250
50 ng/ml avocado matrix calibration std	MatStd50 Avocado	Quality Control	250
Avocado spike 250 #1	Spk250-1 Avocado	Quality Control	250
Avocado spike 250 #2	Spk250-2 Avacado	Quality Control	250
50 ng/ml avocado matrix calibration std	MatStd50 Avocado	Quality Control	250
50 ng/ml calibration std in solvent	CalStd50	Standard	250
<u>500 ng/g spike level</u>			
100 ng/ml calibration std in solvent	CalStd100	Standard	500
100 ng/ml calibration std in solvent	CalStd100	Standard	500
100 ng/ml corn matrix calibration std	MatStd100 Corn	Quality Control	500
Corn spike 500 #1	Spk250-1 Corn	Quality Control	500
Corn spike 500 #2	Spk250-2 Corn	Quality Control	500
100 ng/ml corn matrix calibration std	MatStd100 Corn	Quality Control	500
100 ng/ml calibration std in solvent	CalStd100	Standard	500
100 ng/ml carrot matrix calibration std	MatStd100 Carrot	Quality Control	500
Carrot spike 500 #1	Spk250-1 Carrot	Quality Control	500
Carrot spike 500 #2	Spk250-2 Carrot	Quality Control	500
100 ng/ml carrot matrix calibration std	MatStd100 Carrot	Quality Control	500
100 ng/ml calibration std in solvent	CalStd100	Standard	500
100 ng/ml avocado matrix calibration std	MatStd100 Avocado	Quality Control	500
Avocado spike 500 #1	Spk250-1 Avocado	Quality Control	500
Avocado spike 500 #2	Spk250-2 Avacado	Quality Control	500
100 ng/ml avocado matrix calibration std	Matstd100 Avecade	Quality Control	E00

100 ng/ml avocado matrix calibration std
100 ng/ml calibration std in solvent
100 ng/ml soy matrix calibration std
Soy incurred residue
Soy incurred residue Dil 1-10
100 ng/ml soy matrix calibration std
100 ng/ml calibration std in solvent

MatStd100 Avocado	Quality Control	500
CalStd100	Standard	500
MatStd100 Soy	Quality Control	500
Soy Incur	Unknown	
Soy Incur (1-10)	Unknown	
MatStd100 Soy	Quality Control	500
CalStd100	Standard	500

Data Fields: Index

Sample Name Sample Type Dilution Factor Peak Name (Transition Name) Peak Area IS Peak Area RT Concentration (Spk level or Std conc) Calc concentration