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List of F i gu res

Figure 1. Illustration of confounding. A confounder, C, is a variable that is associated
with the exposure (E), independently associated with the outcome (0), and
not on the causal pathway between the two. In the presence of uncontrolled
confounding, a spurious relationship is detected between the exposure and
the outcome.

Figure 2. Illustration of effect modification. In the presence of effect modification, the
association between the exposure (E) and the outcome (0) varies across
levels of the effect modifier (M). Here, the exposure-outcome association is
positive (+) within stratum 1 of the effect modifier, whereas the association
is negative (-) within stratum 2 of the effect modifier.
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In trodu ction

Epidemiology is the study of the distribution and determinants of health and disease in

populations. In human health risk assessment, which aims to estimate the nature and probability

of adverse health effects in humans of adverse health effects in humans who may be exposed to

environmental hazards (U.S. EPA, 2015b), information is often based on extrapolation of

laboratory animal toxicology studies. However, high-quality epidemiologic studies can also

provide valuable information about the quantitative exposure-response relationship in humans

who have experienced actual, directly relevant exposures (Burns et al., 2014; Calderon, 2000;

Hertz-Picciotto, 1995; Lavelle et al., 2012; Vlaanderen et al., 2008). As opposed to laboratory

animal data, epidemiologic data are not subject to major uncertainties related to species

extrapolation to humans. Epidemiologic studies can also encompass heterogeneous populations

and real-world variability in the duration, intensity, route, and level of exposure, as well as

mixtures of exposures. By contrast, laboratory studies are typically restricted to genetically

inbred strains and controlled, high-dose exposures that may not reflect realistic conditions.

However, epidemiologic studies are usually poorly suited for detecting small increases in risk,

and study design limitations can permit bias and confounding that undermine the validity of

results for causal inference. In particular, poor exposure assessment is largely responsible for

the limited use of epidemiologic data in human health regulatory risk assessments.

In 2010, the Office of Pesticide Programs (OPP) at the U. S. Environmental Protection Agency

(EPA) released a draft proposed framework for incorporating human epidemiologic and incident

data (i.e., case reports and short-term poisoning incidents surveillance studies) into pesticide risk

assessments (U.S. EPA, 2010). The proposed approach was designed to impart scientific rigor,

consistency, and transparency to the Agency's evaluation of epidemiologic data in pesticide risk

assessments, thereby taking advantage of the increased availability of large, prospective

epidemiologic studies. The integration of epidemiologic studies into risk assessment of

pesticides was also intended to be conceptually consistent with the National Research Council

(NRC)'s 2007 vision and strategy on 21st-century toxicity testing, with an emphasis on using

systems biology, bioinformatics, and high-throughput technologies to better understand adverse

outcome pathways (AOPs) (NRC, 2007). In particular, the draft framework used problem

formulation, as routinely used in ecological risk assessments, as a method to define exposure

pathways and potential health outcomes of interest, along with appropriate scientific methods

for characterizing risk in the context of addressing risk management questions and risk

mitigation options. The draft framework also used the concepts of mode of action (MOA) and

AOP to guide the integration of information from different lines of scientific evidence and

across different levels of biological organization, from the initiating molecular event to tissue-

and organ-level responses, extending out to whole-organism and population levels of effect.

This approach was intended to build a biological systems-level approach to increase scientific
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confidence in risk management decision making based on potential causal relationships between

chemical exposures and disease outcomes.

A Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) Scientific Advisory Panel

subsequently met to review the draft framework and make recommendations for revision

(FIFRA Scientific Advisory Panel, 2010). One of the panel's recommendations was to devote

particular attention to the quality of epidemiologic studies , including consideration of the

validity of the exposure assessment, sample size and statistical power, the definition and

assessment of the outcome, possible sources of bias , consideration of and control for

confounding and effect modification, and external validity or generalizability . The FIFRA

Scientific Panel also recommended consideration of prospective cohort studies , historical cohort

studies , case-control studies , cross-sectional studies , and hybrid designs in the weight of

evidence regarding an exposure-outcome association , although it recommended separate

treatment of ecologic studies due to their inherent limitations for risk estimation at the

individual level.

Many epidemiologic studies are not useful for risk assessment, often due to the lack of valid,

specific, quantitative measures of exposure, especially etiologically relevant exposure in the

past . Other common limitations are poor control for confounding and other biases , constrained

evaluation of effect modification based on small subgroups , and limited generalizability to the

entire population . Due to these shortcomings , some scientists believe that the role of

epidemiology in risk assessment should be limited mainly or exclusively to "hazard

identification," i.e., an early phase of risk assessment in which the overall weight of relevant

scientific evidence is identified and reviewed to determine the types of health outcomes that can

be caused by an exposure (NRC, 1983 ) and further explored in mechanistic research . However,

others view epidemiology as potentially contributing to later phases of risk assessment,

including " dose-response assessment" (i.e., quantitative estimation of the incidence of a health

outcome as a quantitative function of the amount of exposure) and "risk characterization " (i.e.,

integration of the exposure assessment and dose-response assessment components of a risk

assessment to synthesize an overall conclusion about risk that is complete, informative, and

useful for decision makers) (U.S. EPA, 2000).

The potential role of epidemiology in informing all phases of risk assessment can be

substantially enhanced through more rigorous study design and conduct . For example,

epidemiologic studies with quantitative , specific , and accurate measurements of internal

biological dose and associated health outcomes can be used for dose-response assessment, while

those that demonstrate changes in population health due to modification of a causal exposure

can provide some proof-in-principle of observed risk and offer input for the regulatory impact

assessment of the potential benefits of increased regulatory actions to mitigate risk . Therefore,

to provide guidance for the design and interpretation of future epidemiologic studies, this
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document draws from previous discussions of the strengths and limitations of epidemiologic

data for human health risk assessment (Burns et al., 2014; Calderon, 2000; Hertz-Picciotto,

1995; Lavelle et al., 2012; Vlaanderen et al., 2008), the importance of integrating observational

human and experimental animal data for this purpose (FIFRA Scientific Advisory Panel, 2010;

U.S. EPA, 2010), and specific examples of the use of human epidemiologic data for pesticide

risk assessment to organophosphate pesticides (U.S. EPA, 2015a; U.S. EPA, 2011) to provide

recommendations on key attributes for any epidemiologic study to increase its likelihood of

providing informative results for human health risk assessment.

Study Design

Standard epidemiologic study designs include ecologic, cross-sectional, case-control,

retrospective/historical cohort, and prospective cohort studies, as well as variants and hybrids of

these designs (e.g., case-control, case-crossover, and case-only studies). Ecologic studies

estimate exposure crudely at the group level, and group-level associations cannot validly be

assumed to hold at the individual level. Therefore, although ecologic studies can be helpful to

identify potential hazards and formulate causal hypotheses (i.e., "problem formulation"), they

typically are not useful for quantitative human health risk assessments.

Cross-sectional, case-control, and cohort studies benefit from the collection of detailed

individual-level data on exposures, outcomes, and potential confounders or effect modifiers.

Cross-sectional studies assess exposure and disease status simultaneously, often making it

impossible to demonstrate temporal concordance, show whether the exposure preceded the

outcome chronologically. Cross-sectional studies are thus susceptible to information bias (if

exposure ascertainment or reporting differs systematically between cases and non-

cases/controls) and reverse causality (if the disease condition itself affects the measured

exposure). Selection bias can also threaten the validity of these studies if study participation or

completeness of data collection varies by exposure and disease status. Other key limitations of

cross-sectional studies are the inability to distinguish between incident (newly developed) and

prevalent (pre-existing) health conditions, and the possible enrichment of prevalent cases with a

relatively longer duration or better prognosis than is typical.

Case-control studies are efficient for the investigation of rare outcomes and those with a long

putative latency period between exposure and disease onset. Well-conducted case-control

studies can be conceptualized as more efficient versions of corresponding cohort studies in

which the cases are the same as those who would have been included in the cohort study, and

the controls are a sample of the remaining cohort (source population). Thus, rigorous case-

control studies yield relative risks that are valid estimates of the rate ratios that would be

obtained from cohort studies. However, retrospective case-control studies collect exposure

information after disease onset, making it difficult under some circumstances to establish the
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temporal sequence between the exposure and the outcome , and raising the possibility of

information bias and reverse causation. Selection bias can occur due to differentially

incomplete study participation or data collection, or if inappropriate control identification and

selection lead to an exposure distribution that is not representative of that in the study base that

gave rise to the cases. Case-control studies are generally inefficient for the investigation of rare

exposures, and they usually focus on one or a limited number of disease conditions at a time,

except when nested within a cohort study.

Retrospective or historical cohort studies are efficient for the investigation of uncommon

exposures and can enable the evaluation of associations with a large number of health outcomes,

although cohort studies are often underpowered for rare outcomes . Selection bias due to

differential enrollment by disease status is generally unlikely because the study population is

usually defined independently of the outcome-often based on place of employment or

residence- although it can still occur . Selection bias can also arise if follow-up varies by

exposure and disease status . Because exposures are ascertained after at least some outcomes

have already occurred , information bias is a possibility , although it can be minimized by the use

of existing exposure information that was recorded independently of disease status. The

reliance on previously collected exposure records, however, often limits detailed assessment of

exposures , confounders , and effect modifiers , since existing data typically have not been

collected for research purposes . Identification of an appropriate comparison (unexposed) group

can also be challenging in retrospective cohort studies.

Thus, for the purposes of informing all three phases of human health risk assessment, the

prospective cohort study design is generally the most likely to yield useful results. Advantages

include the ability to examine multiple health outcomes, the opportunity to collect detailed

information on exposures and other covariates, the possibility of establishing the temporal

sequence between exposure and outcome , and the low probabilities of information bias due to

differential exposure misclassification and selection bias due to differential participation, since

disease status is unknown at the time of study initiation and data collection . Selection bias due

to differential follow-up, however, can still occur, particularly if study attrition is substantial.

By enrolling individuals from a broad age range, prospective cohort studies enable investigation

of the potential health effects of an exposure over the life course. With repeated exposure

measurement, these studies can potentially capture whether risk of the outcome varies by pattern

of exposure over time , and they can also evaluate whether the exposure -outcome relationship

varies with temporal aspects of exposure , such as duration and age at initiation , cessation, or

peak exposure.

In summary , well-conducted cross-sectional, case-control , and cohort studies can all yield valid

and informative results for risk assessment. However, the generally low probability of biased

exposure misclassification and the possibility of assessing repeated exposures and multiple
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health outcomes across the life span are major advantages of prospective cohort studies, if

properly conducted.

Exposure Assessment

An essential component of any human health risk assessment is characterizing the exposure-

response relationship, that is, evaluating the likelihood and severity of specific health outcomes

at different levels and conditions of exposure (U.S. EPA, 2015b). In risk assessment, the critical

effect is the adverse health outcome that occurs at the lowest level of exposure among all

available studies, based on the assumption that prevention of that critical effect would also

prevent other adverse effects. Ideally, a study population should experience a sufficiently wide

range of exposure, including low and high levels, such that extrapolation outside of the observed

exposure range is not necessary to estimate health risks at low exposures.

Quantitative assessment of valid, reliable, and etiologically relevant exposures is arguably the

most formidable challenge in conducting epidemiologic studies to inform risk assessment. In

this context a distinction should be made between "exposure," which is used here to refer to the

concentration of an agent in the external environment, and "dose," which here refers to the

biologically absorbed internal concentration of the agent. Because some exposures may not

result in any appreciable dose (e.g., as in the case of substances with low vapor pressure and low

skin penetrability, resulting in low absorbed dose from inhalation and dermal exposures,

respectively) (Acquavella et al., 2004), and because the same exposure can result in

substantially different doses (e.g., due to inter-individual differences in metabolism) (Garfitt et

al., 2002), internally measured dose is more likely to be etiologically relevant than externally

measured exposure.

Epidemiology is fundamentally an observational science, meaning that naturally occurring

situations are observed by investigators to understand the patterns and causes. Because

exposures are not assigned in a fixed manner-and, indeed, it would be considered unethical to

expose study subjects to agents at concentrations that are known or suspected to cause adverse

health effects-current and especially past exposures can be challenging to measure accurately

and reliably.

If available, biomarkers of exposure, such as concentrations of a pollutant or its metabolites in

tissues or bodily fluids and exposure-induced molecular changes, generally provide a better

measure of internal dose than other exposure metrics, such as self-reported exposure or

environmental sampling data (Schmidt, 2006). Biomarkers must be validated in large,

representative populations to ensure their utility and relevance. First and arguably foremost for

regulatory decision making, they must be specific to the exposure of interest, i.e., able to reflect

the dose of a particular agent or group of agents, but not others. Without specificity to the
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chemical of interest, a valid association cannot be identified . Second , biomarkers must be

shown to be accurate , i.e., able to measure what they aim to measure . Third, they must be

reliable , i.e., able to yield the same results upon repeated testing . Finally, the analytical method

used to detect the biomarker must be sensitive , i.e., able to detect low doses of the agent of

interest . Most biomarkers cannot distinguish among sources or routes of exposure, which can

sometimes be differentiated on the basis of questionnaires and environmental measures.

With respect to pesticide exposure, the advantages of assessment using biomarkers are

especially evident when contrasted with the limitations of self-reported exposure data . Directly

analogous biomarkers may exist for humans and animals , thereby facilitating the integration of

human epidemiology and animal toxicology results , whereas human self-reported exposure data

have no animal equivalent . In addition , self-reported information is prone to various types of

error, especially inaccuracy in the recollection of specific pesticides and amounts used (Blair

and Zahm, 1990). Any given day of pesticide use can entail highly variable amounts of

pesticides used and numbers of mixing operations , and urinary biomarkers of pesticide exposure

have been shown to be poorly correlated with estimated exposure intensity scores based on

farmers' self-reported data (Acquavella et al., 2006).

In the Agricultural Health Study cohort, for example, the reliability (reproducibility) of self-

reported information on ever having mixed or applied specific pesticides was evaluated by

comparing responses to two questionnaires completed one year apart by nearly 4 , 000 pesticide

applicators (Blair et al ., 2002). Agreement on ever/never use ranged from approximately 70%

to 90%, and the kappa statistic value for inter-rater agreement ranged between approximately

50% and 70%. However, for more detailed questions about duration , frequency , and decade of

first use of specific pesticides, agreement was lower (mostly 50-60%, with kappa 30-80%). In

other validation studies that compared urinary pesticide biomarker levels with estimated

exposure intensity based on an expert-derived algorithm using self-reported or directly observed

exposure , data, Spearman correlation coefficients ranged between 0.4 and 0 . 8, depending on the

type of pesticide (Blair et al ., 2011; Coble et al., 2011). Correlations were poorer (between -0.4

and 0 . 2) for self-reported determinants of pesticide exposure such as kilograms of active

ingredient, hours spent mixing and applying , and number of acres treated . These results

underscore the limitations of self-reported pesticide exposure data and highlight the importance

of using validated biomarker levels when possible.

A key limitation of reliance on biomarkers of exposure is that such measures usually reflect only

current or recent past exposures . In some circumstances , such as studies of in utero exposures,

measures of relatively short-term biomarker levels may not be problematic. To identify causal

relationships between exposures and health outcomes with long presumed or known latency

periods , biological markers of distant past exposure would be ideal , but such measures may be

difficult or impossible to obtain (Chang et al ., 2014). For example, valid biological markers of
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an exposure may not yet exist, or the agent may be rapidly metabolized such that measured

biological levels reflect only recent exposure. In addition, biomarkers may be unable to provide

information on duration of exposure, which may have an equal or greater impact on a given

health outcome compared with cumulative exposure or intensity of exposure. Under such

circumstances, the observed association between current or recent exposures and outcome risk

may not reflect the association with more etiologically relevant exposure. The ideal way to

overcome this limitation, as well as to manage uncertainty about critical exposure window(s), is

to enroll cohort members early in life and collect biomarkers repeatedly over an extended time

so that exposures at different ages and calendar periods can be documented for many years prior

to outcome onset. However, this approach is extremely resource-intensive and often infeasible,

especially in a mobile population in which a large proportion of cohort members would become

lost to follow-up over time.

Instead, a more practical method to assessing distant past exposures may be to develop models

that incorporate information such as historical exposure sources, environmental sampling levels

in air, soil, water, and other media, individual locational history (e.g., places of residence,

employment, and education), individual exposure opportunities and pathways, and physiology.

For example, to estimate local residents' and employees' past exposure to perfluorooctanoic

acid (PFOA) released from a manufacturing facility in the Mid-Ohio River Valley, investigators

used information on the environmental fate and transport of PFOA in air, surface water, and

groundwater; participant-reported demographic characteristics, residential histories, drinking

water sources, tap water consumption rates, workplace histories, and body weight; and a single-

compartment absorption, distribution, metabolism, and excretion model to estimate the facility's

contribution to PFOA in serum (Shin et al., 2011 a; Shin et al., 201 lb).

An essential step in building such models is to validate estimated exposure levels against

directly measured values, ideally over time and in a range of subgroups to ensure model

robustness (Chang et al., 2014). Only models that have been rigorously validated and shown to

yield predicted values that are highly correlated with measured values should be used in

epidemiologic research. Even highly accurate models may rely on unrealistic assumptions such

as a fixed residential address, constrained daily mobility, temporal stability in exposure patterns,

and randomly distributed measurement error and missing data. Thus, as novel, real-time

sensing technologies enable more direct, detailed, and accurate exposure measurement, the NRC

envisions a shift in 21st-century exposure science toward less emphasis on models and

interpolation, and more emphasis on use of massive exposure datasets (NRC, 2012).

Outcome Assessment

For characterization of an exposure-response relationship, outcome assessment is equally as

important as exposure assessment. In some cases, as when study subjects can be linked to a
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well-established , population-based disease registry that uses medical records for diagnostic

confirmation , outcome assessment is relatively straightforward. For example , high-quality

cancer and cause-of-death registries exist in many areas and are commonly used for

epidemiologic research . However, disease registries are not available for most health outcomes,

particularly those that correspond to toxicological endpoints often studied in experimental

animals , such as systemic , immunological , neurological , reproductive, and developmental

effects (ATSDR, 2015).

When linkage to existing population-based disease registries is not available , outcome

ascertainment can be challenging . As with exposures , outcome measures should be accurate,

reliable, specific, and sensitive, and ideally derived from objective, clinically confirmed sources

or based on standardized, validated tools rather than self-reported , unconfirmed data. Even

when the outcome measure fulfills all of these requirements , it is impractical for use in

epidemiologic research unless it can readily be ascertained in all study subjects . For example, a

disease registry that excludes large segments of the target population , a medical record notation

that is missing for many patients , or an invasive diagnostic test that is refused by a substantial

proportion of study subjects is not a practical basis for outcome ascertainment in epidemiologic

research, because substantial selection bias is likely to occur under such circumstances.

When determining the appropriate outcome (s) to measure in epidemiologic studies designed to

inform risk assessment, consideration should be given toward comparability with outcomes of

interest in laboratory animal studies . Insight into the MOAIAOP can inform the selection of

outcomes that are physiologically comparable between humans and animals, or intermediate or

surrogate outcomes reflecting disease processes that precede clinically recognizable diseases or

adverse health outcomes . Such outcomes along the pathway between exposure and frank

disease may include preclinical health indicators (e.g., peripheral blood counts or serum lipid

levels) or cellular biomarkers of toxicological effects (e.g., DNA adducts or gene expression

profiles). As with exposures, integration of results from epidemiology and toxicology studies

can be facilitated by the use of outcome biomarkers that are relevant and measurable in both

humans and animals.

However, unless a surrogate outcome is perfectly predictive of the true clinical endpoint, false

positive or false negative results will arise . If possible , studies that use outcome biomarkers

should also evaluate the clinical conditions of interest to ensure outcome validity (Strimbu and

Tavel, 2010). Moreover, an exposure may act through a biological pathway other than the

expected MOA/AOP, especially given that the pathophysiology of a given disease is often

incompletely known . Thus, biomarkers as surrogate endpoints should be constantly re-

evaluated as additional information emerges from all relevant fields-including data from in

vitro, in silico, animal, and human studies-to help build a biologically plausible MOAIAOP

pathway.
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Confounder and Effect Modifier Assessment

Confounding is defined as distortion of the estimated association between an exposure and an

outcome due to the presence of a common causes or causes of the exposure and the outcome

(Figure 1).

Figure 1. Illustration of confounding . A confounder, C, is
a variable that is associated with the exposure (E),
independently associated with the outcome (0), and not
on the causal pathway between the two. In the presence of
uncontrolled confounding , a spurious relationship is
detected between the exposure and the outcome.

Effect modification, also referred to as interaction or heterogeneity, is defined as (real or

spurious) variation in the exposure-outcome association across levels of another factor (Figure

2).

Figure 2. Illustration of effect modification . In the presence of effect modification, the
association between the exposure (E) and the outcome (0) varies across levels of the effect
modifier (M). Here , the exposure -outcome association is positive (+) within stratum 1 of
the effect modifier , whereas the association is negative (-) within stratum 2 of the effect
modifier.

Valid, reliable, and thorough assessment of major confounders and effect modifiers is essential

for accurate characterization of exposure-outcome relationships. When associations are not

reported separately across heterogeneous subgroups of an effect modifier, then the overall

association will not apply to all (or even any) segments of the target population. In human

health risk assessment, potential effect modification by basic population characteristics such as

age, sex, and race/ethnicity are important to consider, as is effect modification by other key

environmental chemical exposures. However, investigation of effect modification should be
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driven by biologically motivated, preferably a priori hypotheses, rather than exploratory

searches for statistically significant results.

In the absence of adequate measurement and control for confounding, the magnitude and

possibly the direction of the observed exposure-outcome association will be incorrect. Even

when a confounder is included in a statistical model, residual confounding can occur if the

confounder is not classified with sufficient detail or accuracy. For example, adjustment for

ever/never smoking status cannot fully control for the confounding effect of tobacco smoking on

many exposure-outcome associations. In the case of pesticides, for which occupational

exposures usually involve multiple agents as well as other agriculture-related exposures, it can

be especially difficult to estimate the independent effect of a single chemical.

When uncontrolled or residual confounding is unavoidable-for instance, when information on

a confounder is unavailable or sparse-investigators should not only acknowledge the potential

for bias, but also assess the possible magnitude and direction of bias. Assessment of the

direction of confounding can be accomplished through the use of directed acyclic graphs to

represent causal relationships between variables (VanderWeele et al., 2008). In the case of a

dichotomous exposure, outcome, and confounder, the magnitude of confounding is bounded by

(i.e., cannot exceed) the strength of the associations of the confounder with the exposure and the

outcome, and it also depends on the prevalence of the confounder (Rothman et al., 2012).

Knowledge about plausible relationships between these factors can be used to conduct

sensitivity analysis of the potential impact of unmeasured but known confounders. However,

the magnitude of confounding can greatly exceed these bounds in the presence of several

confounders or a multi-level confounder. Moreover, even modest confounding can have a

relatively large impact on weak exposure-outcome associations.

Selection Bias

As discussed earlier, the threat of selection bias is one justification for prioritizing prospective

cohort studies, where subjects are enrolled prior to the onset of health outcomes of interest, over

case-control studies, where subjects are enrolled after disease onset. Selection bias distorts the

estimated exposure-outcome association as a result of the procedures used to select subjects into

the study or the analysis, or factors that influence study participation. Bias occurs when the

exposure-outcome association differs between study participants and all theoretically eligible

study subjects-that is, when study selection or participation differs by exposure and outcome

status.

In a prospective cohort study, selection bias can occur if data completeness or study attrition-

that is, loss to follow-up-is related to exposure and outcome status. Collecting analyzable data

from all subjects and maintaining a high rate of follow-up are thus integral to ensuring study

1507316.000 - 5694
10

Confidential - Produced Subject to Protective Order MONGLY02314053

Case 3:16-md-02741-VC   Document 779-5   Filed 11/20/17   Page 15 of 41



validity. Selection bias at initial study enrollment is less likely to occur because subjects are

identified prior to the onset of the outcome, although it can arise, for example, if participation is

influenced by knowledge of individual risk (e.g., based on family history of a disease) or by

certain common health risk factors, such as socioeconomic status.

In practice, adjusting for selection bias can be difficult because detailed data are often lacking

for quantitative analysis of differences between participants and non-participants (Porta et al.,

2014; Rothman et al., 2012). However, control for selection bias is sometimes possible if the

selection factors act (and can therefore be adjusted) like confounders, or if the selection

probabilities within each level of the factors affecting selection can be obtained or estimated

under plausible assumptions.

neraliz ility

Generalizability, or external validity, refers to whether inferences drawn from a study

subpopulation can validly be applied to people outside of the study source population. For

national regulatory standards, study findings should be applicable to the general population.

Internal validity, or accurate measurement of effects among study subjects, is a prerequisite for

external validity; results cannot be generalized to other populations if they are not valid even for

the source population under study. Whether study results are generalizable to other populations

is determined based on theory, expert judgment, and integration of external scientific

knowledge, such as understanding of the mechanism underlying an observed exposure-outcome

association (Porta et al., 2014). Generalizability can be enhanced by study representativeness-

that is, similarity of the study subjects, setting, exposures, and outcomes to other broader

populations-especially if the study subjects are representative of the general population of a

country or other large geographic region.

In the context of human health risk assessment conducted to inform regulatory decision-making,

the generalizability of epidemiologic studies takes on greater importance than in an academic

research context. Ideally, studies should enroll sufficient numbers of diverse subjects to enable

characterization of variability in risk across different susceptible populations, and to determine

whether effect modification occurs by age, sex, race/ethnicity, socioeconomic status, and other

characteristics. Subjects with a wide range of exposure levels, including individuals with no

exposure, should be studied to enable broad characterization of exposure-response patterns.

Direct evaluation of risk in various populations reduces uncertainty resulting from extrapolation

or undue generalization from a narrowly defined study population.
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Statistical E rror a nd Analysis

In classical statistical hypothesis testing, two types of error can occur: type I error (also called

alpha error), which refers to incorrect rejection of a hypothesis, or a "false-positive" test result;

and type II error (also called beta error), which refers to failing to reject a false hypothesis, or a

"false-negative" test result. Statistical power is the converse of type II error (i.e., 1 - beta); it is

the probability that a hypothesis will be rejected if it is false or, roughly, the ability of a study to

detect a statistical association if one exists. By convention, power of at least 80% is considered

acceptable for a statistical test.

Factors that influence the power of a given test include the study design, the number of subjects,

the variability of the outcome, the effect size, and the alpha level. The effect size and outcome

variability are fixed, the alpha level is conventionally set at 5%, and the study design may be

constrained by resources and data availability. Therefore, the number of subjects is usually the

factor most amenable to modification by investigators. More subjects generally lead to greater

statistical power (as long as the subjects are not all in a single comparison group), so

investigators aim to enroll a sufficient number of subjects to detect the primary hypothesized

association(s) with at least 80% power. Especially when power is lower than 80%, but even

when it is greater, any statistically nonsignificant result should be interpreted in light of whether

the null hypothesis was not rejected due to type II error.

On the other hand, consideration should also be given to whether statistically significant results

are due to type I error. When multiple hypotheses are tested simultaneously, the probability of

rejecting at least one true null hypothesis is typically high. That is, the probability of making at

least one type I error in n tests is 1 - (1 - a)n; for n = 20 tests, this probability is 64%. The

problem of multiple testing is exacerbated when one tests a large number of hypotheses, then

focuses a posteriori on tests with statistically significant p-values. Most procedures for

adjusting statistically for multiple comparisons, such as the methods to control the family-wise

error rate (the probability of at least one type I error) or the false discovery rate (the expected

proportion of type I errors among the rejected hypotheses), involve adjustment of the alpha level

(Glickman et al., 2014). These procedures are based on the assumption that the observed

distribution of p-values is unbiased-an assumption that is seldom strictly true in epidemiologic

research. At a minimum, authors should report all analyses that were conducted, not only those

yielding statistically significant results, and they should clearly differentiate between a priori

and a posteriori hypotheses. In general, the tendency of epidemiologists to highlight significant

associations and downplay null results (Kavvoura et al., 2007) contributes to a high ratio of

false-positive to false-negative results in the published literature

Other assumptions that underlie any statistical analysis should be tested for validity. For

example, the Cox proportional hazards regression model (Cox, 1972), which was originally

1507316.000 - 5694
12

Confidential - Produced Subject to Protective Order MONGLY02314055

Case 3:16-md-02741-VC   Document 779-5   Filed 11/20/17   Page 17 of 41



developed for the analysis of data from clinical trials, is used in epidemiology as a standard

approach to the analysis of prospective cohort studies. As opposed to clinical trials in which

exposures are fixed and uniform, follow-up is relatively short, and confounding is eliminated by

randomization, prospective cohort studies often feature heterogeneous, imprecisely measured,

and time-varying exposures, relatively long follow-up, and confounding by many measured and

unmeasured risk factors. A fundamental assumption of the Cox proportional hazards regression

model-namely, that the relative risk (hazard ratio) is constant over the time scale (age, in many

prospective cohort studies)-may frequently be violated, such that the average hazard ratio is

uninformative (Hernan, 2010). Instead, directly estimated hazard functions may be the more

natural target of estimation in cohort studies.

Communication of Uncertainty

Besides random error, uncertainty in epidemiology can arise from sources of systematic error,

including exposure and outcome measurement error, confounding, selection bias and other types

of bias, and the need for extrapolation due to insufficient information on exposure levels or

susceptible populations of interest. According to the NRC, uncertainty in risk assessment refers

to "lack of information, incomplete information, or incorrect information," and it "depends on

the quantity, quality, and relevance of data and on the reliability and relevance of models and

inferences to fill data gaps" (NRC, 2009). For epidemiologic studies to contribute to the

quantification of uncertainty in risk assessment, each study should better describe and, ideally,

quantify the magnitude and impact of various sources of uncertainty.

Concerns have long been raised regarding the appropriate characterization and communication

of uncertainty in epidemiologic studies for use in human health risk assessment and regulatory

decision making (Briggs et al., 2009; Burns et al., 2014; Byrd and Barfield, 1989; Spiegelman,

2010; Stayner et al., 1999). Recommended approaches to improving the delineation of

uncertainty in epidemiologic studies, thereby enabling quantitative assessment of and

adjustment for potential sources of bias, include the following:

• Describing and discussing in detail all sources of uncertainty, as well as the degree of
potential impact on effect estimates; these sources include measurement error,
confounding, selection bias, other biases, allowance for latency period, statistical
power, choice of data set, choice of statistical model, variation in disease
susceptibility, and generalizability, among others;

• Documenting the direction and magnitude of confounder associations with exposures
and outcomes;

• Conducting validation studies to test the accuracy of surrogate measures against
gold-standard measures;

• Using validation data to quantify the source, type, direction, magnitude, and
likelihood of measurement errors;
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• Using statistical techniques to adjust for the impact of measurement errors on
estimated associations;

• In the absence of validation data, conducting sensitivity or uncertainty analyses to
assess the degree of potential bias, based on reasonable assumptions;

• Communicating the extent of uncertainty, including assumptions that underlie key
decisions.

More systematic , thorough, and transparent evaluation of uncertainty, as well as collaborative

development of standardized approaches to uncertainty assessment across scientific disciplines,

would strengthen the utility and application of epidemiologic research for risk assessment and

regulatory policy decision making.
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Case Stud ies

Strengths and limitations of specific study design characteristics for human health risk

assessment of pesticide exposures can be illustrated through examination of actual

epidemiologic studies described in detail in published papers . Two studies that are used as

examples in this section are a pair of prospective cohort studies, the Agricultural Health Study

and the Columbia Center for Children's Environmental Health (CCCEH) cohort study . Because

hundreds of papers have been published from each cohort (AHS, 2015; CCCEH, 2015), this

section focuses on the published analyses from each cohort investigating exposure to

organophosphate insecticides.

Exposure Assessment

The Agricultural Health Study is a prospective cohort study of 89,656 private pesticide

applicators, their spouses, and commercial pesticide applicators recruited in Iowa and North

Carolina in 1993-1997 (Alavanja et al., 1996). Exposure to organophosphate insecticides was

measured using self-reported data from written questionnaires completed at study enrollment

and, to some extent, shortly after enrollment and during follow-up. The initial questionnaire for

private pesticide applicators assessed whether subjects had ever personally mixed or applied

specific pesticides (including terbufos, fonofos, and trichlorfon, among others), along with

duration, days per year, and initial year of use of each pesticide (AHS, 1996). Other pesticides

(including malathion, ethyl or methyl parathion, and diazinon, among others) were assessed in

less detail based on a question assessing lifetime use. The initial questionnaire for commercial

pesticide applicators used similar questions but evaluated different specific pesticides (e.g.,

malathion, ethyl or methyl parathion, and diazinon with detailed questions; azinphos methyl,

phosmet, and tetrachlorvinphos with simplified questions). Additional questions were asked

about application methods and use of personal protective equipment for all pesticides or

pesticide classes in general. A supplemental take-home questionnaire, completed by 44% of

enrolled pesticide applicators, ascertained more detailed information on some pesticides and

other covariates.

The Agricultural Health Study questionnaires were highly detailed, thorough, and thoughtfully

designed. Few, if any, other epidemiologic studies have conducted more exhaustive

questionnaire-based assessment of pesticide exposures. Nevertheless, as discussed earlier, self-

reported pesticide use data have substantial drawbacks. These include limited accuracy and

reliability of recollected detailed exposures, crude summary measures of exposure that fail to

capture important heterogeneity, and only modest correspondence between self-reported

exposures and measured biomarker levels, as demonstrated in validation studies conducted in

this cohort (Coble et al., 2011). In the context of risk assessment, self-reported pesticide use
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information also is not readily comparable with controlled doses in laboratory animals.

Although self-reported information has the advantage of being able to address distant past

exposures , and collecting repeated , validated biomarker data in the entire Agricultural Health

Study cohort population would probably have been infeasible in terms of costs and logistics, the

reliance on self-reported pesticide exposure data substantially limits the potential for results

from this study to be used in dose-response assessment and risk characterization for human

health risk assessment.

The CCCEH cohort study measured exposure to several organophosphate insecticides and other

pesticides or their metabolites in maternal peripartum and umbilical cord plasma, as well as

maternal ambient air samples collected by personal air monitors used during the third trimester

of pregnancy (Whyatt et al., 2003; Whyatt et al., 2002). Only chlorpyrifos and diazinon were

detected in at least 5% of cord plasma samples or 48-hour maternal ambient air samples, so

subsequent analyses of health risk associations focused on these two organophosphate

insecticides. A validation study showed stable 2-week integrated indoor air levels of

chlorpyrifos within homes (8% of variance explained by within-home variability) and diazinon

(6%), and strong correlations were observed between 2 -week indoor and 48 -hour maternal

personal air levels of chlorpyrifos (p = 0.85 ) and diazinon (p = 0.90) (Whyatt et al., 2007).

However, chlorpyrifos levels in blood were not associated with personal and indoor air

chlorpyrifos levels (Whyatt et al., 2009). Acetyl cholinesterase (AChE) and/or butyl

cholinesterase levels were not measured, preventing direct comparisons between observed

adverse effect exposure levels and levels producing AChE inhibition in this study population.

The use of specific biomarkers and environmental sampling to quantify exposure to individual

organophosphate pesticides in the CCCEH cohort study has obvious advantages , especially in a

non-occupationally-exposed population in which self-reported exposure to specific pesticides

would be expected to be highly inaccurate . The reliance on one-time measurements taken in the

third trimester (maternal ambient air) or shortly after delivery (maternal and umbilical cord

plasma) is problematic if exposure changed during pregnancy . For example , changes in dietary

patterns could have affected maternal and cord blood levels of organophosphate insecticides

over time , and seasonal variability was observed in indoor air levels of pesticides , probably due

to use for residential pest control (Whyatt et al., 2007). If exposure changed over time, the

measured values might not be representative of earlier exposure levels that could be more

etiologically relevant (e.g., with respect to fetal growth and certain other perinatal outcomes).

Also , postnatal exposure levels , which might be etiologically relevant to health outcomes later

in childhood, were not measured.

However, it is conceivable that exposures were relatively constant during the approximately 40

weeks of pregnancy , making perinatal plasma biomarker levels both etiologically relevant

(under the assumption that unmeasured maternal preconception and postnatal exposures are not
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important) and comparable to experimental doses used in animal studies of developmental

toxicity. A validation study in a subset of CCCEH cohort participants showed substantial

within-individual variability in maternal prenatal levels of 3,5,6-trichloro-2-pyridinol (TCPy, a

metabolite and a primary environmental degradate of chlorpyrifos, chlorpyrifos-methyl, and

triclopyr), but the authors did not evaluate intra-individual variability in maternal prenatal blood

chlorpyrifos levels (which were not appreciably associated with urinary TCPy levels) (Whyatt et

al., 2009).

Outcome Assessment

The Agricultural Health Study used a variety of methods to ascertain health endpoints,

depending on the outcome of interest. For example, cancer incidence was ascertained via

linkages to statewide cancer registries (Beane Freeman et al., 2005); all-cause and cause-

specific mortality was ascertained via linkages to state and national death registries (Lee et al.,

2007; Mills et al., 2009); and neurological symptoms, respiratory outcomes, diabetes, and other

nonfatal health outcomes were ascertained based on self-report (Hoppin et al., 2006; Kamel et

al., 2005; Mills et al., 2009; Montgomery et al., 2008). Well-established population-based

cancer registries are generally accepted as providing highly valid and nearly comprehensive

ascertainment of incident cancer cases (with some exceptions, such as nonmelanoma skin

cancer) in a geographic area. Likewise, death registries are generally accurate and complete for

identifying vital status, although specific causes of death are prone to misclassification that can

be severe (Kircher et al., 1985; Percy et al., 1981; Smith Sehdev and Hutchins, 2001). Self-

reported health outcome data, however, are highly susceptible to misclassification, and are

particularly problematic when exposures are also self-reported, such that outcome

misclassification may differ systematically by exposure status. In the absence of validation data

establishing that the accuracy of self-reported information for specific health outcomes, results

based on such data should be interpreted conservatively.

In the CCCEH cohort study, information on birth outcomes was obtained from medical records

(Perera et al., 2003; Whyatt et al., 2004), which are objective and generally valid sources, while

most neurodevelopmental, cognitive, and behavioral outcomes were assessed based on

standardized, validated tools that are widely used in research and medicine (i.e., the Bayley

Scales of Infant Development, the Child Behavior Checklist, and the Wechsler Intelligence

Scale for Children) (Horton et al., 2012; Lovasi et al., 2011; Rauh et al., 2011; Rauh et al.,

2006). Childhood tremor was also assessed using a validated screening tool (hand-drawn

spirals) that has been used in other research studies, but population screening tools for tremor

are not yet well established (Louis, 2015). Additionally, brain morphology was assessed using

high-resolution, T1-weighted magnetic resonance imaging (Rauh et al., 2012), which is a well-

established technology, but the interpretation of results with regard to potential neurotoxic

effects is not standardized and lacks comparability with other studies.
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In general, limitations of standardized assessment tools include the possibility that test

administrators can influence the results, that they may not be sufficiently sensitive to capture

subtle effects, and that their findings may not correspond to clinically recognizable deficits.

With respect to neurological outcomes, it is unclear whether the measures assessed in children

using these tools are comparable to those measured in rodent studies, such as cognitive

outcomes (e.g., radial arm maze, passive avoidance, conditioned avoidance, novel object

recognition), motor activity outcomes (e.g., open field locomotion, figure-eight maze),

behavioral outcomes (e.g., time in the open arm in an elevated plus maze, time to start eating in

novel environment, chocolate milk preference, forced swim test, time actively interacting in

conspecific pairs), sensory function outcomes (e.g., responses to tactile, auditory, olfactory, or

visual stimuli), and neuromotor functions (e.g., time to cling to a rod, ability to stay on an

increasingly inclined plane or a rotarod) (U.S. EPA, 2015a). In particular, it may not be

scientifically justifiable to conclude that positive results for any neurodevelopmental outcome in

animals are consistent with or provide toxicological support for results related to another

neurodevelopmental outcome in humans.

Confounder and Effect Mod ifier Assessment

Questionnaires used in both the Agricultural Health Study and the CCCEH cohort study were

used to gather detailed information on demographic, environmental, behavioral, and other

characteristics that might act as potential confounders or effect modifiers. The Agricultural

Health Study questionnaires were particularly extensive (AHS, 1996) and the cohort was

sufficiently large as to enable simultaneous statistical adjustment for several potential

confounders. For example, associations between diazinon use and cancer risk were adjusted for

age, state of residence, education, smoking history and pack-years, alcohol consumption, family

history of cancer, and lifetime days of any pesticide application (Beane Freeman et al., 2005),

while associations between pesticide use and neurological symptoms were adjusted for age,

state, education, smoking pack-years, and alcohol use (Kamel et al., 2007). Effect modification

was not systematically examined, but the authors lacked compelling a priori hypotheses

regarding interactions.

In the CCCEH cohort study, associations with birth outcomes were restricted to nonsmokers

(plasma cotinine < 25 ng/mL) and adjusted for measures of maternal body size, parity, newborn

sex, and gestational age (Perera et al., 2003), and later additionally for ethnicity, environmental

tobacco smoke in the home, and season of delivery (Whyatt et al., 2004). Associations with

neurodevelopmental outcomes were adjusted for age, sex, race/ethnicity, maternal IQ, maternal

education, quality of the home care-taking environment, and prenatal environmental tobacco

smoke exposure (Rauh et al., 2011; Rauh et al., 2006), and later additionally for various

neighborhood-level sociodemographic and housing characteristics (Lovasi et al., 2011). Effect

modification was examined by race/ethnicity (Perera et al., 2003), calendar period (Whyatt et
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al., 2004), quality of the home environment (Horton et al ., 2012), child sex, and other covariates

(Rauh et al., 2011), but statistical power was limited in subgroup analyses.

Selection Bias

Over 80% of eligible pesticide applicators and 75% of spouses of married private applicators

enrolled in the Agricultural Health Study during the initial recruitment phase, which took place

at licensing facilities for application of restricted-use pesticides (AHS, 1996). However, only

44% of enrolled pesticide applicators completed the detailed take-home questionnaire shortly

after enrollment, and participation in follow-up questionnaires was also highly incomplete (64%

of private applicators, 59% of commercial applicators, and 74% of spouses in phase 2; 46% of

private applicators and 62% of spouses in phase 3) (AHS, 1996). Thus, considerable selection

bias could have occurred if nonparticipation was related to exposure and health status. A formal

analysis of bias due to study drop-out does not appear to have been conducted. However, an

analysis of bias due to missing data-another form of selection bias-revealed that subjects

with complete covariate data were substantially different from those with missing data (Lash,

2007). Thus, in analyses relying on follow-up questionnaires or relying on covariates with a

high degree of missing data, selection bias is a major concern in the Agricultural Health Study.

For the CCCEH cohort study, eligible pregnant women were identified from prenatal clinics at

two New York City hospitals, and about 70% agreed to participate in the study (Whyatt et al.,

2002). Participants were somewhat younger and more likely to be African American than

nonparticipants; other differences, if measured, were not described. Of 314 mother-newborn

pairs eligible for the analysis of birth outcomes, umbilical cord blood chlorpyrifos or diazinon

levels or pesticide levels in paired maternal air and blood samples were available for 82% of

subjects (Whyatt et al., 2004). Reasons for missing data in the remaining 18% were not

provided, and the incomplete exposure data raise the possibility of modest selection bias. At 3

years the retention rate in the full cohort was 83%, with no significant differences between

participating and nonparticipating pairs in terms of maternal age, ethnicity, marital status,

education, income, newborn gestational age, or newborn birth weight (Rauh et al., 2006).

However, analyses were further restricted to 90% of children with the requisite data at 12, 24, or

36 months, and 74% with data at all three time points. At 7 years the retention rate in the full

cohort was essentially unchanged at 82%, with no significant sociodemographic differences

between participants and nonparticipants, but the proportion with complete data was not

reported (Rauh et al., 2011). Even though the authors reported that the included subjects did not

differ from the full cohort with respect to demographic characteristics (Horton et al., 2012), it is

unknown whether they differed in terms of exposures and outcomes. Thus, although loss to

follow-up was reasonable, additional exclusion due to missing data could have introduced

additional selection bias.
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neralizability

The Agricultural Health Study was restricted to licensed private and commercial pesticide

applicators and spouses of private pesticide applicators residing in Iowa and North Carolina at

study entry (Alavanj a et al., 1996). Exposures to organophosphate insecticides are anticipated

to be higher in this occupational cohort than in the general population, and results therefore may

not be generalizable to lower-level, nonoccupational exposures. Numerous types of

organophosphate insecticides were used by study subjects, with a sufficient range in annual days

and lifetime days of use to provide informative exposure variability (Hoppin et al., 2012).

A comparison of farmers enrolled in the Agricultural Health Study with data from the 1992 and

1997 Censuses of Agriculture for Iowa and North Carolina revealed that study participants were

younger, lived or worked on larger farms, more frequently applied herbicides, insecticides, and

fungicides, and were more likely to raise beef cattle and swine and grow corn, soybeans, hay,

and oats (in Iowa) or more likely to grow crops commonly seen in the state (in North Carolina)

(Lynch et al., 2005). Thus, cohort members probably experienced heavier pesticide usage

relative to farmers statewide, and results from this study may not apply even to lower-level

occupational exposures in the agri cultural industry. Results also cannot reliably be generalized

to other subpopulations not represented by the study subjects.

Eligible subjects for the CCCEH cohort study were women aged 18-35 years who had resided

in northern Manhattan (Central Harlem or Washington Heights/Inwood) or the South Bronx for

at least 1 year before pregnancy, self-identified as either African American or Dominican, did

not smoke cigarettes, use other tobacco products, or illicit drugs during pregnancy, did not have

diabetes, hypertension, or known HIV, and had their first prenatal visit by the 20th week of

pregnancy (Whyatt et al., 2002). These restrictive eligibility criteria may limit the

generalizability of results from this study, which may not apply to exposure levels or scenarios

found in other settings and populations, such as people with occupational pesticide exposures,

those living in rural areas, other racial/ethnic groups, people with less residential stability or

access to health care, or high-risk pregnancies. The detection of only chlorpyrifos and diazinon,

but not other organophosphate insecticides, in an appreciable proportion of plasma and personal

ambient air samples among study subjects, along with the relatively narrow range of low-level

exposures for the majority of participants, also limits generalizability to more highly exposed

individuals. Given that the authors found an association between pre-2001 but not post-2001

cord plasma chlorpyrifos or diazinon levels and fetal growth, it is possible that associations vary

by the absolute level of exposure.
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Statistical E rror a nd Analysis

In general, statistical methods appeared to be appropriate and were described in detail, and a few

papers described the use of alternative methods to evaluate the robustness of the primary

statistical models (Beard et al., 2014; Rauh et al., 2011; Starks et al., 2012). Testing of basic

regression assumptions-e.g., that the disease rate (for linear regression) or its logarithm (for

Poisson regression) changes linearly with equal increment increases in the exposure variable;

that changes in the rate from combined effect of different covariates are additive (for linear

regression) or multiplicative (for Poisson regression); that the variance of the errors is constant

(for linear regression) or the variance of the number of cases is equal to the mean (for Poisson

regression) at each level of the covariates-generally was not described, although this is not

unusual for epidemiologic papers.

Authors of epidemiologic studies typically not report statistical power to detect specific

associations, in part because power calculations are based on assumptions that may not apply,

and they assume the absence of bias and confounding. Thus, the general lack of discussion of

statistical power in papers from the Agricultural Health Study and the CCCEH cohort study was

not exceptional. Nevertheless, insufficient power could have contributed to some statistically

nonsignificant associations with rare exposures and/or outcomes in the Agricultural Health

Study or any associations in the CCCEH cohort study, in which most analyses were based on

200-300 subjects and subgroup analyses were based on fewer.

Many hypotheses were tested within and among papers derived from these cohorts, and chance

was mentioned as a possible explanation for significant findings in a minority of papers. Some

studies distinguished between primary and secondary or exploratory analyses, whereas others

did not. Although virtually all studies reported at least some statistically nonsignificant

findings, it is impossible to determine whether additional analyses yielding null results were not

reported.

Commu nication of U nce rtain ty

Exposure reliability and validation studies were conducted in both cohorts to evaluate

measurement error (e.g., (Blair et al., 2002; Blair et al., 2011; Coble et al., 2011; Hoppin et al.,

2002; Whyatt et al., 2009; Whyatt et al., 2007)), and several papers included a limited set of

sensitivity analyses that examined the potential impact of certain assumptions or types of bias

(Bonner et al., 2007; Jones et al., 2015; Lovasi et al., 2011; Rauh et al., 2011; Starks et al.,

2012). Potential exposure and outcome measurement error, information bias, selection bias, and

confounding were often discussed, although rarely with estimates of the direction and

magnitude of influence. In general, quantitative approaches to correct for measurement error

were not implemented.
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Very few epidemiologic studies to date have rigorously evaluated and communicated

quantitative measures of uncertainty. The Agricultural Health Study and CCCEH cohorts went

farther than most in terms of conducting validation studies and sensitivity analyses,

acknowledging sources of error and bias, and documenting exposure assessment approaches.

Additional efforts from these high-profile studies would help to lead the way toward more

thorough, transparent, and quantitative characterization of uncertainty in the field of

epidemiology in general.

Feasibility

Large, rigorous epidemiologic studies are generally very complex and resource-intensive to

conduct. Prospective cohort studies in particular are the most expensive and time-consuming

studies to implement, typically requiring millions or billions of dollars, thousands of

participants, hundreds of staff, and years or decades of follow-up time (except in the case of

birth cohorts examining neonatal or early childhood outcomes). The Framingham Heart Study,

the nation's longest-running prospective cohort study of cardiovascular disease that has been

ongoing since 1948, was until recently receiving approximately $9 million per year from the

National Institutes of Health (Barlow, 2013). The National Children's Study, a planned

prospective cohort study that would have followed 100,000 U. S. children from before birth to

age 21 years, was dissolved after more than $1.2 billion had already been spent on trying to

launch the study, which was halted due to study design failures (Kaiser, 2014).

Designing and adhering to standardized protocols, enrolling a sufficient number and range of

participants, repeatedly collecting questionnaires, biospecimens, medical records, and other data

from a large proportion of participants over time, sustaining long-term staff, maintaining data

integrity, and obtaining continued funding support are all major challenges to conducting a

successful prospective cohort study. The demands of these prerequisites probably explain the

relatively infrequency of prospective cohorts in epidemiologic research, compared with more

readily implemented study designs such as case-control and retrospective cohort studies.

However, the rewards of large investments in prospective cohort studies are seen in the

hundreds of major scientific papers generated from single cohorts, the profound public health

impact of their findings, and the tendency of health and regulatory agencies to rely preferentially

on the results of prospective cohort studies whenever available.

Weight-of-evidence Assessment of Causation

In the "hazard identification" phase of the risk assessment paradigm, the relevant scientific

evidence is identified and reviewed to determine whether exposure to a specific agent can cause

a particular health outcome (NRC, 1983). As a basis for concluding whether observed

associations are likely to be causal, the results of any individual epidemiologic study must be
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interpreted in the context of the complete body of pertinent epidemiologic literature, combined

with supporting evidence from other scientific fields, including toxicology and mode-of-action

studies.

The guidelines put forth by Sir Austin Bradford Hill in 1965 for evaluating the causality of an

exposure -outcome association (Hill, 1965) are commonly cited and implemented in

epidemiology, sometimes in slightly modified form, and they are broadly accepted in the

scientific community (Federal Judicial Center and National Research Council of the National

Academies, 2011; Gordis, 2000; Hennekens and Buring, 1987; Lilienfeld and Stolley, 1994;

Mausner and Kramer, 1985 ; Rothman et al., 2012 ; Schlesselman , 1982). These nine guidelines

for evaluating the current state of knowledge regarding an exposure-outcome association are

strength, consistency, specificity, temporality, biological gradient, plausibility, coherence,

experiment, and analogy . Hill referred to these as nine " features to be specially considered" or

"viewpoints" on the basis of which one should evaluate associations before declaring them

causal . He did not assert that all guidelines must be met to establish causality ; rather, he stated:

"None of my nine viewpoints can bring indisputable evidence for or against the cause -and-effect

hypothesis and none can be required as a sine qua non" (Hill , 1965). Nevertheless, these

guidelines provide a useful, logical, and widely used framework for evaluating the weight of

scientific evidence in favor of causality.

When evaluating the overall body of literature, the quality of each epidemiologic study-that is,

its likelihood of yielding valid results-should also be taken into account . In general , results

from studies that are more likely to be valid should be carry greater weight in a weight-of-

evidence assessment . Guidelines for assessing the quality of individual epidemiologic studies

also exist (Downs and Black, 1998; Genaidy et al., 2007; Guyatt et al., 2011; Johnson et al.,

2014; Viswanathan and Berkman, 2011; Wells et al., 2014), but no set of criteria is widely

accepted and used . Standard considerations for evaluating epidemiologic study quality are those

discussed in this document, namely , study design , validity and reliability of the assessment of

exposures , outcomes, and other covariates, confounder adjustment, potential for selection bias

and other types of bias , generalizability , statistical power, approach to multiple testing, and

appropriateness of the statistical analysis . Several existing scales for epidemiologic study

quality assessment also take clarity and completeness of reporting into account, but these

criteria do not directly affect study validity. For example, if a prospective cohort study has

substantial loss to follow-up, the risk of selection bias will high regardless of whether the loss to

follow-up is clearly described. Thus, although poorly described studies are often difficult to

interpret , thoroughly described studies should not necessarily be treated as more likely to be

valid.

A framework for evaluating human epidemiologic studies for quantitative risk assessment has

been formulated by the European Union Network of Excellence Environmental Cancer Risk,
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Nutrition and Individual Susceptibility (ECNIS) Integrated Risk Assessment Group (Vlaanderen

et al., 2008). The framework is based on three tiers : the first tier consists of criteria to exclude

studies that are not suitable for quantitative risk assessment, the second tier consists of criteria to

exclude studies that have an inappropriate study design for quantitative risk assessment, and to

select appropriate criteria for further evaluation in the third tier, which consists of design-

specific criteria to rank and ultimately select the studies for inclusion in quantitative risk

assessment . From the first tier, a set of minimum criteria can be formulated for epidemiologic

studies to inform quantitative risk assessment (Box 1 ). After categorization based on study

design (second tier), the considerations in the third tier are comparable to those used to evaluate

epidemiologic study quality in general , namely , potential for selection bias (response rate, loss

to follow-up ), outcome assessment (minimum follow-up time, blinded health outcome

assessment), exposure assessment (quality of the exposure measurement methods, application of

exposure measurements in exposure assessment, type of exposure metric, specificity of the

exposure indicator , blinded exposure assessment, quality of the exposure assignment strategy),

generalizability (insight in the variability of exposure; also, response rate and loss to follow-up),

and potential for other types of bias (potential for information bias, insight in the potential for

systematic error in study results ; also, blinded exposure and outcome assessment). By providing

a systematic and transparent method to select and rank epidemiologic studies based on quality

and relevance , these guidelines aid in the assessment of the epidemiologic weight of evidence

for quantitative risk assessment.

Box 1. Minimum parameters for the design of epidemiologic studies to inform risk assessment

• Cohort, case-control , cross-sectional , or hybrid design

• Individual-level exposure, outcome , and covariate data

• Specific, quantitative exposure assessment

• Specific outcome assessment based on accepted norms or standards

• Measurement and adjustment of all relevant strong confounders

• Sufficient description of study selection criteria to enable assessment of potential
selection bias

• Sufficient description of statistical analysis to enable assessment of assumptions and
appropriateness

• Sufficient description of results to enable assessment of hypothesis tests conducted

• Sufficient description of subject characteristics and exposure variability to enable
assessment of generalizability
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B ridg i ng Toxicol ogy and E pidemiology

An important challenge in incorporating epidemiology into risk assessment is facilitating better

understanding of the strengths and limitations of epidemiology, including both the overall

science and individual research studies, among toxicologists and other laboratory scientists.

Whereas animal toxicologists are accustomed to standard study design specifications for risk

assessment, epidemiology is not amenable to fixed design parameters. Observational research

tends to focus on people in their natural settings, where they largely choose their own exposures

(either directly or indirectly, for example, by choosing where to live or work), as well as

whether to participate in studies. Consequently, observational epidemiology studies are often

more realistic and generalizable than, for example, randomized clinical trials based on highly

restricted patient populations. However, the observational nature of epidemiology also makes

this field of research susceptible to uncertainty (e.g., regarding environmental and behavioral

exposures, especially in the past) and bias due to systematic differences between exposed and

unexposed, and diseased and nondiseased groups.

In epidemiology, there is no universal "ideal study design." The appropriate study design for a

given exposure-outcome association depends, for example, on the prevalence and variability of

the exposure, the rate of the outcome, the anticipated strength of the association, the latency

period between exposure and outcome, the window(s) of susceptibility, and the presence of key

effect modifiers. A prospective study design is often preferred, but not for rare outcomes,

especially those with a long latency period during which study attrition might be high. Forty

weeks of follow-up might be ideal for studies of birth outcomes, but woefully inadequate for

studies of cancer incidence. Two hundred study subjects might be sufficient to detect a strong

association with a common risk factor, but inadequate to detect a weak association. None of

these factors are under the investigator's control, and epidemiologists often have little empirical

guidance upon which to base assumptions regarding these factors when they design a study. As

a result, an epidemiologist's answer to questions about the choice of study design, sample

size/statistical power, duration of follow-up, and other study characteristics is generally that "it

depends."

Understandably, this response can be frustrating to laboratory scientists who are more familiar

with clear-cut study requirements. To bridge this gap, greater communication and cross-

disciplinary education are needed so that non-epidemiologists can distinguish between high- and

low-quality studies and given appropriate weight to their results. A checklist approach cannot

be used to evaluate the quality of epidemiologic studies. Instead, well-informed judgment is

required-yet it is not enough for epidemiologists simply to say that they know a good study

when they see one. Instead, EPA and other risk-informed regulatory agencies should foster

interaction and collaboration between epidemiologists and toxicologists so that scientists in both
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fields can interpret and use the full spectrum of relevant studies for the purposes of risk

assessment.

Future of Epidemiology

Epidemiologic research on disease etiology is increasingly incorporating tools from molecular

biology, genomics, and other high-throughput "omic" technologies to measure numerous

exposures and/or outcomes simultaneously. This line of research into the cellular and molecular

underpinnings of exposure-outcome associations is highly compatible with the National

Research Council (NRC)'s visions for 21st-century toxicity testing (NRC, 2007) and exposure

science (NRC, 2012), and gives promise to the idea of illuminating MOAs and AOPs by

integrating information from epidemiology, toxicology, and related scientific fields. With

growing capacity to rapidly and inexpensively measure a wide array of exposures or outcomes,

important considerations will be how to properly collect, process, and store biospecimens for

future research use, and how to evaluate the validity and reliability of new technologies, as well

as the reproducibility of results that they generate.

As part of its vision for cancer epidemiology in the 21st century, the U.S. National Cancer

Institute (NCI) recommends expanding cohort studies to collect exposure, clinical, and other

information across the lifespan and to include multiple health outcomes (Khoury et al., 2013).

In making this recommendation, the NCI recognizes that assembling a cohort with documented

medical histories and exposure information and appropriate biospecimens is a daunting

endeavor, especially within the U. S. health care system. One suggested approach to expanding

cohort studies is to foster collaboration, replication, and translation by increasing data and

biospecimen access and sharing, harmonization, and joint analyses based on already existing

cohorts. Cohorts are being leveraged to incorporate data on additional exposures and health

endpoints through linkages to existing sources such as federal, state, and local environmental

data systems, electronic health records, Medicare/Medicaid, and disease registries. In addition,

investigators responsible for cohort studies are participating in large-scale efforts to conduct

parallel and pooled analyses that require large numbers, detailed data, diverse populations, and

independent replication (NCI, 2015). These collaborative efforts will help to bolster molecular

epidemiology research, in which associations are often modest in magnitude and discoveries

concerning disease mechanisms can be incremental.

Part of extending the reach and impact of epidemiology to have a greater impact on public

health policy-another goal of the NCI for the 21st century (Khoury et al., 2013)-is to increase

the relevance and utility of epidemiologic studies to human health risk assessment. Large,

rigorous prospective cohort studies with validated exposure biomarker data, confirmed health

outcomes analogous to animal endpoints, thorough adjustment for confounding and

investigation of effect modification, minimal opportunity for selection bias and other biases, and
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a broad range of susceptible populations and exposures offer the greatest potential for

integration with laboratory data from animal studies to serve as a solid scientific foundation for

effective , evidence-based regulatory action.
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