

DRAFT-

Lymphoma risk and pesticide use in the Agricultural Health Study

Alavanja MCR DrPH, Hofmann, J PhD, Lynch CF M.D. PhD, Hines C MS, Barry KH PhD, Barker J B.S., Thomas K B.S., Sandler DP PhD, Hoppin JA ScD, Blair A PhD, Koutros S, PhD, Andreotti G, PhD, Beane Freeman LE, PhD

March 15, 2013

Ŋ.,

Saved as: AlavanjaNHL March(15) 2013

ABBREVIATIONS

Agricultural Health Study (AHS)

Rate ratios (RR)

95% confidence intervals (CI)

Organochlorine insecticides (OC)

Organophosphate insecticides (OP)

United States Environmental Protection Agency (U.S. EPA)

International Agency for Research on Cancer (IARC)

Correspondence

Michael C.R. Alavanja, Occupational and Environmental Epidemiology Branch Division of Cancer Epidemiology and Genetics, National Cancer Institute 6120 Executive Blvd., EPS 8000 Rockville, MD 20852, USA. Phone: 301-435-4720 Fax: 301-402-1819 Email: alavanjm@mail.nih.gov

Running Title: Pesticides and Non-Hodgkin Lymphoma

Abstract: 247 words: 250 word limit for EHP.

Manuscript, references and tables 1-5: 8,162 including title page etc.. [narrative (abstract & main manuscript 3,717, references 1,411, tables 2942] 7000 word limit for EHP.

Comment [a1]: If we have the message and analyses right we have to cut 1,200 words for EHP. We may want to go to another journal.

Comment [AB2]: I suggest go to another journal.

ABSTRACT

Background: Farming and eExposure to pesticides haves been linked to non-Hodgkin lymphoma (NHL) in a number of previous studies. Objective: To evaluate specific pesticides for associations with NHL and NHL subtypes in a prospective cohort of farmers and commercial pesticide applicatorsregistered pesticide applicators. Methods: We examined NHL incidence in a prospective cohort of 57,310 licensed pesticide applicators in Iowa and North Carolina from 1993- 2008. Information on pesticide and other agricultural eExposure_information lifestyle and medical historyhealth histories wasere obtained from a self-administered questionnaires administered at enrollment (1993-1997) and in a telephone follow-up questionnaire administered approximately five years later (1998-2004). Poisson regression modeling was used to evaluate the association between use of specific pesticides and the rate ratios of NHL and NHL subtypes while adjusting for age and other potential confounding variables. Results: A statistically significant monotonic increase in the risk of overall NHL with increasing life-time exposuredays for lindane (organochlorine insecticide) was observed and a significant positive nonmonotonic trend was observed for butylate (thiocarbamate herbicide), among 50 pesticides evaluated. Significantly increasing risk of specific NHL subtypes with increasing life-time exposure-days of use were observed for lindane, butylate, dicamba, terbufos, alachlor, EPTC, imazethapyr and trifluralin. The total number of different pesticides used was not associated with NHL risk overall, but the number of different triazine/triazone herbicides was significantly associated NHL. Chlorinated and organophosphate insecticide and triazine/triazone herbicides used, was related to risk in specific NHL subtypes. Conclusions: A wide variety of chemicallydistinct herbicides and insecticides were significantly associated with different NHL subtypes. Most pesticides are associated with only one NHL subtype.

Comment [AB3]: Need to indicate which subtypes were associated with which pesticides

Comment [AB4]: Mention the chemical class subtype associations before the specific pesticide associations. Go from the general to the specific

Comment [AB5]: I am not sure we want to deliver this message. As written it says we believe we found a number of meaningful pesticide – subtype links and that the links were specific. This implies we believe these findings are probably "real." I think the message should be – this is one of the few studies (and the only prospective study I think) that has looked at specific pesticide – subtype associations. Since different subtypes may have different etiologies these findings provide leads for future evaluations.

3

Keywords: Cohort Study, Farming, Pesticide Exposure, Non-Hodgkin Lymphoma.

INTRODUCTION

Non-Hodgkin lymphomas (NHLs) are a heterogeneous group of over 20-different B and T-cell neoplasms affecting the immune system/ lymphatic system arising primarily in the lymph nodes (Swerlow et al. 2008; Shankland et al., 2012). MNumerous-eta-analyses (Blair et al., 1985; Blair et al., 1993; Beane Freeman, 2009) studies relate lymphohaematopoietic cancers with farming (Blair A et al., 1993; Blair and Beane Freeman, 2009), with exposure to pesticides being a hypothesized etiologic agent. Since the 1980s a number of studies have been conducted to evaluate possible links between specific pesticides and NHL. A meta-analysis of 13 casecontrol studies published between1993-2005 observed an overall significant meta-odds ratio between occupational exposure to pesticides and NHL (OR=1.35; 95% CI: 1.2-1.5). When observations were limited to those that had more than 10 years of exposure the risk increased (OR=1.65; 95% CI: 1.08-1.95) (Merhi M, et al., 2007). While the meta-analysis supports the hypothesis that pesticides are associated with NHL, it did notthey lack sufficient detail about evaluate exposure to specific pesticide exposure and other information on risk factors for hematopoietic cancers to identify specific causes (Merhi M, et al., 2007). In individual studies of NHL have reported links a number of specific pesticides including phenoxy acid herbicides (Dich et al 1997; Hardell L et al., 1981; Hoar SK et al., 1986; Zahm et al, 1990, Miligi et al, 2006, McDuffie et al, 2001Eriksson M et al., 2008: Burns et al., 2011: 8), and chlorinated pesticides (McDuffie et al, 2001, Colt et al., 2006: Spinelli JJ et al 2007, Purdue et al, 2007, Brauner EV, et al., 2012; Quintana et al., 2004; Coco et al., 2004), organophosphates (Waddell et al., 2001; Hohenadel et al., 2011)dicamba (McDuffie et al., 2001; nitro-derivaties (Miligi et al., 2003): and triazole fungicides and urea herbicides (Orsi et al., 2009)have been suggested as causes of NHL,-but the evidence has been inconsistent. Little evidence of an association between phenoxy acid herbicides and NHL was observed in New Zealand (Pearce NE et al 1987), Washington state (USA) (Woods JS, et al 1987), or Minnesota and Iowa (USA) (Cantor KP et al, 1992) and little evidence for chlorinated pesticides was observed in a European study that measure pesticide metabolites in plasma samples (Cocco P et al, 2008). A variety of other pesticides have also been associated with NHL but the evidence available to date does not conclusively link a specific pesticide to NHL (Alavanja M et al., 2012; Cocco P et al., 2013). In a study from the six Canadian provinces case-control study, the risk of NHL increased with the number of different pesticides used (Hohenadel K et al., 2011).(1 think the flow of this first

Comment [AB6]: References are numbered in the reference list, but not in the test

Comment [AB7]: Is the Beane Freeman article cited here Laura's livestock article? It is the only one in the references.

Comment [a8]: Moved the Merhi study up to mention the general association first and later the pesticide class specific-Done

Comment [a9]: Added reference	-
Comment [a10]: Added reference	
Comment [a11]: Added reference	
Comment [a12]: Added Purdue	

Comment [a13]: Sentence added in reference to Laura's comment to mention other chemical associations by way of citing a review article -Done We are ~8,100 words, EHP limit 7,000

Comment [a14]: Cindy suggests cutting down the introduction --Done

paragraph can be modified to make it clearer. Start with farming, then list pesticides that have been linked to NHL in some studies. This should cover the different pesticides that have been linked to NHL. Then list your review and Cocco (2013) to indicate that the evidence is not conclusive for any pesticide).

In the Agricultural Health Study (AHS) we had the opportunity to evaluate <u>the risk of</u> <u>NHL overall and by cell type by both the association of lifetime use of individual pesticides</u> <u>obtained from enrollment and follow-up questionnaires</u> and the number of different pesticides <u>used and NHL incidence overall and by cell type in a prospective cohort study of licensed</u> pesticide applicators in Iowa and North Carolina.

We evaluated potential confounders including a previous history of malignant disease (Wang et al., 2007), different immunosuppressive states (Simard JF, et al., 2012), and body mass index (BMI) (Patel et al., 2013) and other factors observed to be associated with NHL in the AHS cohort.

MATERIALS & METHODS

Study Population

The AHS is a prospective cohort study of 52,394 licensed private pesticide applicators in Iowa and North Carolina and 4,916 licensed commercial applicators from Iowa. The cohort has been described in detail (Alavanja et al., 1996). Briefly, the cohort included individuals seeking licenses for restricted use pesticides from December 1993 through December 1997 (82% of the target population enrolled). The protocol was approved by relevant institutional review boards. We obtained cancer incidence information by regular linkage to cancer registry files in Iowa and North Carolina. In addition, we matched cohort members to state residential mortality registries and the National Death Index to identify vital status, and to address records of the Internal Revenue Service, motor vehicle registration files, and pesticide license registries of state

Comment [a15]: Infor about cancer registries deleted as suggested by Laura.

agricultural departments to determine residence in Iowa or North Carolina. The current analysis included all incident primary non-Hodgkin lymphomas (*n*=333) diagnosed from enrollment (1993-1997) through December 31, 2008. We censored follow-up at diagnosis of NHL or any other cancer, date of death, movement out of state, or December 31, 2008, whichever was earlier. Person-years of follow-up summed to 714,770.

Tumor Characteristics

Information on tumor characteristics was obtained from state cancer registries. Cases were classified into 5 groups of cell types according to the Surveillance Epidemiology and END Result (SEER) coding scheme (http://seer.cancer.gov/lymphomarecode) SEER recodes of cell type are listed in appendix 1.-_The first group (n=117) includes chronic B-cell lymphocytic lymphomas (CLL) /small B-cell lympocytic lymphomas (SLL) [n=101], and mantle-cell lymphomas (MCL) (n=16). The second group includes 94 diffuse large B-cell lymphomas; the third group includes 53 follicular lymphomas. There were 34 'other B-cell lymphomas' consisting of a diverse set of B-cell lymphomas including precursor acute lymphoblastic leukemia/lymphoma (n=2), hairy-cell leukemia (n=6), B-cell non-Hodgkin lymphoma not otherwise specified(n=6), Burkitt lymphoma/leukemia (n=1), and extra-nodal Marginal Zone Lymphomas (MZL)/ MALT type/ Nodal MZL(n=13). The fifth grouping included 35 cases consisting of T-cell lymphomas (n=12) and non-Hodgkin lymphoma of unknown lineage (n=23). The fifth grouping was excluded from cell type-specific analyses because of small numbers of cases with identified cell types. Although multiple myeloma (MM) (n=77) and plasmacytomas (n=6) are

Comment [lbf16]: Did you remove prevalent cancers? Does this mean that you also included second cancers if they were NHL? Eg. If someone had an incident prostate cancer and then was diagnosed with an NHL, do you consider them to be an NHL case? Or, did you censor them at their diagnosis of prostate cancer? I would remove all prevalent cancers (n=1,074) and only include first primary NHL diagnoses, censoring at diagnosis of any cancer

Comment [a17]: Yes, we removed all prevalent cancers and included only primary NHL cases clarification made in sentence -no other change necessary.

Comment [a18]: Cindy would like the 5 groups to be named. They do not have names so it is may be inappropriate to give them non-standard names. I gave the SEER recode number in the table as a means of identification.

Comment [lbf19]: Since you present them in the appendix, I would suggest taking them out of the text here—it'shard to read with all these numbers. You could also add them to the relevant tables under the specific sub-types.

Comment [a20]: SEER recodes deleted as recommended by Laura

now classified as a type of non-Hodgkin lymphoma (Morton LM et al., 2007), the pesticide literature prior to 2008 (including the AHS) examined multiple myeloma (and plasmacytomas) separately. (AB - I wonder if the decision not to include myeloma might seem inconsistent with our decision to go with the new definition of NHL. We say we are changing the cancers we characterize as NHL to fit the new definition, but then we promptly say we are not going to follow the new definition for all of the new inclusions, i.e., myeloma will not be included. It is inconsistent and seems gerrymandered. The reason given also does not seem adequate (myeloma has been analyzed separately for pesticides) because there have also been studies that looked a pesticides and chronic lymphocytic leukemia, yet it is included as NHL here. Not sure what to do but the whole thing just seems messy. We need to talk about this on an EC call.) We continue to examine MM separately to facilitate comparisons to the previous literature. We provide supplemental table 7 which shows NHL risk (previous definition, ICD-O-3) and lifetime use of individual pesticides (AB - I think to make clear the possible the impact, or lack of it, of changing the NHL definition. Table 7 needs to include ORs from both definitions of NHL for the same length of follow up. This would make it clear that any difference regarding specific pesticides would be due to differences in disease classification.- A comparison of cell types in the previous (ICD-O-3) and recent Inter Lymph hierarchical classification of NHL is provided in appendix 2.

Comment [a21]: We added the phrase 'prior to 2008' to avoid a large increase in citations which would contribute an additional 90 words or more (approximately).

Comment [lbf22]: You will need to cite these papers in the discussion.

Exposure Assessment

Information on lifetime use of 50 pesticides was captured in two self-administered questionnaires (http://aghealth.org/questionnaires.html) completed during cohort enrollment (Phase 1). All 57,310 applicators completed the first enrollment questionnaire, which inquired about ever/never use of the 50 pesticides, as well as duration (years) and frequency (average days/year) of use for a subset of 22 pesticides. In addition, 25,291 (44.1%) of the applicators returned the second (take-home) questionnaire, which inquired about duration and frequency of use for the remaining 28 pesticides.

A follow-up questionnaire, which ascertained pesticide use since enrollment, was administered <u>about five</u>5 years after enrollment (1998-2003, Phase 2) and completed by 36,342 (63%) of the original participants. For participants who did not complete a Phase 2 questionnaire (20,968 applicators, 37%), a data-driven multiple imputation procedure <u>based on logistic regression and stratified sampling</u> was employed to impute <u>likely</u> use of specific pesticides in Phase 2 (Heltshe et al.,2012) which used logistic regression and stratified sampling to impute the use of specific pesticides in phase 2.

Comment [a23]: Description of imputation procedure shortened considerable per suggestion -Done

Information on pesticide use obtained from Phase 1 and Phase 2 interviews was used to construct two individual pesticide exposure metrics. We used 2 exposure metrics to assess cumulative exposure to each pesticide: (i) lifetime days of pesticide use, i.e. the product of years of use of a specific pesticide and the number of days used per year; and (ii) intensity-weighted lifetime days of use, i.e. the product of lifetime days of use and a measure of exposure intensity. Intensity <u>of</u> exposure was derived from an algorithm using questionnaire data on mixing status, application method, equipment repair and use of personal protective equipment (Coble et al. 2011).

Comment [a24]: Dropped Dosemeci as suggested Dosemeci is referenced in Coble et al. No additional changes made to this section.

We analyzed total NHL risk and specific cell type NHL by <u>pesticide classes</u>, individual pesticide<u>s</u>-use, and by the number of different pesticides used within a chemical/functional class and the total number of different pesticides used in a working lifetime.

Statistical Analyses

We used Poisson regression to calculate rate ratios (RR) and 95% confidence intervals (95% CI) for overall NHL and four NHL subtypes in relation to pesticide use. Data were obtained from AHS data release versions P1REL201005.00 (for Phase 1) and P2REL201007.00 (for Phase 2). We evaluated pesticides with 15 or more exposed cases of total NHL, thereby excluding aldicarb, aluminum phosphide, carbon tetrachloride/carbon disulfide, dieldrin,(Might look specifically at dieldrin even though it is below your cutpoint because it has been linked to NHL in the past.) ethylene dibromide, maneb, parathion, 2,4,5-TP, trichlorofon, and ziram (This list is different than that provided in the first draft. Why the change?). For each pesticide analyzed, we categorized exposure into non-exposed and tertiles of exposure based on the distribution of exposed cases. A first set of rate ratios were adjusted for age and a second set of rate ratios were adjusted for age and other statistically significant (α =0.05) predictors of NHL in the AHS. We evaluated several lifestyle and demographic measures and identified the following as potential confounding variables: age at enrollment (<40, 40-49, 50-59, 60-70, \geq 70), race (White, Black, other, missing), state (Iowa, North Carolina), family history of lymphoma in first-degree relatives (yes, no, missing), body mass index (BMI <25, 25-<30, >30), cigarette smoking history (never, former, current, missing), alcohol consumption per week (none, < once per week, > once Comment [a25]: Analysis requested by Aaron.

Comment [a26]: Correction suggested by Cindy.

Comment [a27]: We analyzed BMI and it was not a confounder. We added to table 1.

We examined available pack-years and there was no confounding.

per week) and several occupational exposures (i.e., number of livestock, poultry, acres planted, welding, diesel use, number of different pesticides used, and pesticides shown to be associated with NHL in the current analysis)(So all of these factors all significantly associated with risk of NHL here? From Table 1 it looked like most of the other adjustment factors were not significantly associated with NHL.). Tests for trend used the midpoint value of each exposure category, and the Likelihood Ratio tests were used to assess differences between strata (p-interaction). All tests were two-sided and conducted at the α =0.05 level. (I do not quite understand the rationale for the tables. The above indicates ORs were adjusted for several factors. The first set of tables say they are "age adjusted." The supplemental tables have more extensive adjustment. If it is important to adjust for factors other than age, why are these analyses in supplemental tables. If they are not important, why are they done at all. In any case I am not sure you need two tables. Often you see age adjusted and more extensively adjusted ORs in the same table. That would be better because it allows the reader to see if the additional adjusment made any difference in the ORs.)

We also conducted various sensitivity analyses. We analyzed Phase 1 data alone to assess the impact of the additional information collected or imputed from Phase 2. We also explored the effect of lagging exposure data 5 and 15 years since-recent these recent exposures may not have had an impact on the development of cancer. Reported results show un-lagged exposure data from Phase 1 and Phase 2 combined for cumulative intensity-weighted and un-weighted days of use. (AB - 1 think we should start doing some analyses by type of protective equipment used. 1 know it is supposedly taken into account in the intensity score, but it would be informative if there were differences in OR by different protective approaches. It could be used with number

Comment [AB28]: Probably need to add you chose to show these data because the other analyses had not impact.

of days of pesticide use where it has not been taken into account. It provides information that is useful to farmers and extension agents.)

RESULTS

The risk of NHL increased significantly and in a near monotonic fashion with age in the AHS cohort (Table 1). The age-adjusted risk of NHL is significantly lower in NC compared to IA and among current smokers compared to nonsmokers. Other demographic factors including gender, license type, educational level, alcohol consumption, BMI, and a family history of lymphomas were not significant risk factors of NHL in this cohort. We evaluated whether other occupational factors were associated with NHL. Of those evaluated, the number of livestock on the farm and whether cohort members drove farm equipment with diesel engines significantly increased risk of NHL.

The age-adjusted risk of NHL and NHL subtypes from possible exposure to associated with 16 insecticides and herbicides associated with NHL or NHL subtypes or previously associated with NHL are listed in Table 2 (age-adjusted risk of NHL for all other evaluated pesticides in the AHS may be found in supplemental table 1 and fully-adjusted risk of NHL in supplemental table 2). Lindane, an organochlorine insecticide, is the only pesticide showing a monotonic rise in overall NHL risk with increasing life-time days of use (p trend=0.003) and intensity-weighted lifetime days of use (p trend=0.05). Butylate, a thiocarbamate herbicide, showed a significant increasing trend in life-time days of use (p trend=0.004) and intensity-weighted lifetime days of

Comment [lbf29]: I think that you can cut down on reporting the results that are presented in the tables, but I would like to see some more results in the text that aren't in the tables. E.g., what happens when you put both lindane and butylate in the model? What is frequency of use of chemicals, etc.?

Comment [a30]: Narrative now mentions that there is no apparent confounding between lindane and butylate. Only pesticides with 15 or more exposed cases are listed in the tables for analysis. Space limits more extensive discussion of frequency of pesticide use in the AHS, although this can be ascertained from use in controls.

Comment [AB31]: The Methods says they were significant risk factors.

Comment [a32]: Previous table 2 deleted and discussion of potential confounding variables shortened as suggested by Laura.

Comment [t33]: It's not clear why you are showing these 22 pesticides

Comment [AB34]: I think it would help the reader if you presented ever/never results for all pesticides analyzed. This would set the stage for the exposure response analyses. You would largely include only those pesticides with some excess in the ever category in the trend analyses. Now it is not clear why some are listed and others are not. As of now the Results just sort of jump into detailed exposure-response analyses.

Comment [t35]: If there's not a big difference between age and fully adjusted models I would delete fully adjusted

use (p trend=0.04) but the associations were not monotonic. Some other pesticides -had individual point estimates that were significant but did not show a significant pattern of increasing risk with increasing exposure. Lindane and butylate did not show-confounding with each other when they were put in the same model. The significant increasing trend of NHL risk with exposure to lindane and butylate was also not changed with the adjustment days of all other pesticide use, nor with adjustment for days of use of organophosphate insecticides, carbamate insecticides, other insecticides, triazine/triazone herbicides, other herbicides, fungicides, or fumigants. The results from fully adjusted risk of NHL (i.e., Age [<45,45-49,50-54,55-59,60-64,65-69,≥70], smoking status(current, former, never), number of livestock (0,,<100,100-999,>999), drove diesel tractor (<weekly,≥weekly, state (NC, IA) [data not shown were comparable to the age-adjusted risk]. Also, these unlagged results were comparable (not shown) to 5 year and 15 year lagged exposures, therefore we present RRs for unlagged exposure only. **Comment [lbf36]:** I find these lists of RR and 95% CI throughout to be a bit hard to read, plus they take up a lot of words. I think it would be better to provide more information in the text about results that aren't presented in the tables. E.g., for lindane., how many people reported using it in Phase 1 vs. Phase 2 as it was approaching phase out. This will help to set the stage for putting the results in context later in the discussion.

Comment [a37]: Point estimates deleted to reduce word count as recommended.

Comment [a38]: Need to define the pesticides included in each group appendix 2-done

Comment [AB39]: Supplement Table 2 does show the fully adjusted model, right?

We also analyzed Phase 1 data only to assess the impact of the additional information collected or imputed from Phase 2, although there was an increase in precession including phase 2 estimates, no meaningful change was observed in the risk estimates.

The risk of the four major categories of B cell lymphomas by number of days of use of individual pesticide is shown in Table 3. For the CLL/SLL/MCL group of lymphomas, dicamba, a carbamate herbicide (p trend=0.03) and butylate, a thiocarbamate herbicide (p trend=0.04), and

Comment [lbf40]: I don't think you mention this in the results.

Comment [ibf41]: How did you choose the 22 pesticides in this table? Why not 28 as in table 2? Regardless, need to explain rationale/criteria for presenting some and not others.

13

lindane, a chlorinated insecticide, (p trend=0.005) were observed to have a significant increased trend of risk with increasing lifetime-days of use. Metribuzin, a triazone herbicide, (p trend=0.06) had a near significant relationship with this group of lymphomas. Carbaryl, a carbamate insecticide, was observed to have a significant inverse relationship (p trend=0.007).

A significant increase in the risk of Other B-cell Lymphomas was associated with the number of life-time days of use of six herbicides and one insecticide: alachlor (p trend=0.02); butylate, (p trend=0.02499); dicamba (p trend=0.02); EPTC use (p trend=0.01): imazethapyr (p trend=0.03); trifluralin use (p trend=0.01); and terbufos (p trend=0.01) (Table 3). Risk of other B-cell lymphomas was also associated with a non-significant elevated risk for the low and medium exposure categories and was significantly associated with the highest category of exposure for atrazine use (RR=3.6 [95% CI: 1.2-10.8]; p trend=0.06).

No pesticide had a significant exposure response pattern with either diffuse large B-cell lymphomas or follicular B-cell lymphomas, although significant point estimates of risk were identified for butylate, terbufos, and methyl bromide.

The number of different triazine/triazone herbicides used, adjusted for age and lifetime days of use of triazine/triazone herbicides was associated with a significant increasing trend with total NHL risk (p trend=0.04) (Table 4). No other chemical/functional class showed a significant pattern of NHL risk. The association between the age-adjusted risk of the four NHL B-cell subtypes and the total number of different pesticides by chemical class used is presented in Table 5. For the CLL/SLL/MCL group of lymphomas, the number of different chlorinated insecticides (p **Comment [a42]:** Metribuzin, is a triazone herbicide not a triazine herbicide -corrected

Comment [AB43]: Since insecticides come before the herbicides in the table discuss terbufos before the herbicides here in the text.

Comment [AB44]: Glyphosate had a significant trend for diffuse and chlordane and malathion were borderline. EPTC and butylate had borderline trends for follicular.

Comment [AB45]: Not sure what is meant here. Triazine/triazones adjusted for triazine/triazone? trend=0.02) and the number of different organophosphate insecticides (p trend= 0.03) showed a significant trend of increase risk with increasing number of insecticides from these chemical/functional classes. Similar trends were observed for the number of different triazine/triazone herbicides (p trend=0.07), other herbicides (p trend=0.06) and fungicides (p trend=0.11) but the trends were not statistically significant.

For either diffuse large B-cell lymphomas or follicular B-cell lymphomas, no pesticide class had a significant pattern of increasing risk with number of pesticides used, although a significant decreased risk with increasing number of pesticides used was observed for chlorinated pesticides (p trend=0.05) and other insecticides (p trend= 0.04) with the diffuse large B-cell lymphoma group.

For the other B-cell lymphoma group, the number of different triazine/triazone herbicides (p trend=0.006) and the number of different acetamide herbicides (p trend= 0.009) both were observed to have a significant trend of increasing risk with increasing days of use. Similar trends were observed for the number of different carbamate herbicides (p trend=0.11) and 'other herbicides' (p trend=0.06) but these trends were not statistically significant.

Comment [a47]: These will be adjusted for total number of exposure days to chemicals in this class - Done

Comment [a46]: Typo corrected as suggested

Comment [ibf48]: Throughout, you need to reference the previous analyses of AHS data and specific chemicals. You reference Mark Purdue's paper in the intro, but no others

Comment [a49]: See changes made throughout to address these points.

Comment [Ibf50]: This paper just came out and used the most recent definitions of NHL. Actually supportive of these AHS findings. Occup Environ Med2013;70:91-98 doi:10.1136/oemed-2012-100845

Lymphoma risk and occupational exposure to pesticides: results of the Epilymph study

DISCUSSION

<u>AB – 1 think we need to start with the big picture comparisons first. I suggest the order for the</u> <u>discussion should be: (1) Ever/never comparisons for NHL overall, (2) Then move to trends for</u> <u>NHL overall, (3) Then trends for subtypes. (4) Next have a discussion of how the change in</u> NHL definition might affect comparison of our results with those from the literature. (5) Comparison of these results with literature pesticide by pesticide (or pesticide group). (6) Strengths and limitations. (7) Conclusions.

In this analysis, we observed a significant increase in the risk of overall NHL with two pesticides, lindane an organochlorine insecticide no longer registered for use in the U.S and butylate a thio-carbamate herbicide widely used in the United States and other countries. Our findings for total NHL are inconsistent with a number of other studies which found increased risks with a variety of chlorinated and organophosphate insecticides and triazine and phenoxy acid herbicides (Dich et al 1997; Hardell L et al., 1981; Hoar SK et al., 1986; Zahm et al, 1990). However, we did find significantly increasing risk of specific NHL subtypes with increasing lifetime exposure days of individual pesticides use. Butylate and dicamba, carbamate herbicides, and lindane, a chlorinated insecticide, were observed to have a significant increasing risk of the CLL/SLL/ MCL lymphomas sub-types with increasing lifetime-days of use. <u>(This first paragraph yould be to comment on ever/never for specific pesticides, then exposure trends by specific pesticide, and finally exposure trends by NHL subtypes. This summary of the findings should then be followed by a discussion of the effects, or lack of them, from the change in the definition of NHL. Then the findings from this analysis can be compared to the previous literature.)</u>

Other B-cell lymphomas are a varied group including 8 different cell types of lymphomas. Excess risks of other B-cell lymphomas were observed for several widely-used pesticides including: the organophosphorous insecticide terbufos, for alachlor, an acetanilide-herbicide, imazethapyr, an imidazoline-herbicides, and trifluralin, a dinitroaniline-herbicide, and for **Comment [lbf51]:** What was percentage of use in P1 vs P2? If people aren't still using, but we still have excess then we need to explore this further. Do we see stronger effects in earlier time periods? Do we expect this to not be aproblem since lindane is no longer on the market? Or, is this going to be a persistent problem? We also need to say something about when lindane was taken off the market

Comment [AB52]: There is a bit of an inconsistency here. Says there is an excess for lindane, but these findings differ from earlier work that saw excesses for a variety of chlorinated insecticides. Lindane is a chlorinated insecticide.

Comment [lbf53]: This sounds like all the other studies are positive, which isn't actually true. I think that you need to have a more in-depth discussion of specific pesticides and findings.

Comment [AB54]: I do not think we can make this statement of differences with past studies without immediately including a discussion of the difference in disease definition and whether or not this might account for the differences/or similarities with past research. Probably need to start the discussion with comparison of results of analyses for the two different definitions to orient the reader regarding what changes occurred simply because of the change in definition. Then this should be followed with a discussion of findings from an ever/never comparison. Then you go to trends. butylate, dicamba, and, EPTC which all belong to the family of carbamate herbicides. The triazine herbicides atrazine and cyanazine had specific point estimates that were elevated but the trends of risk were neither significant nor monotonic. Metribuzin, a triazone herbicide, had too few other B-cell lymphomas to evaluate. The wide array of functional groups and chemical classes that are associated with an increased risk of Other B-cell lymphomas does not suggest a single known mechanism of action. Multiple pathways seem to be involved.

In a Swedish case-control study a significant excess risk of NHL was associated with the phenoxy herbicide MCPA and glyphosate (Ericksson et al., 2008). 2,4-D and 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) have been banned from Sweden and could not be evaluated (Eriksson M et al.,2008). In our study we could not evaluate MCPA but found no excess risk of NHL or its subtypes with the use of glyphospate, 2,4-D or 2,4,5-T.

In a population-based case-control study conducted in six Canadian provinces increased risk to NHL was associated with a positive family history of cancer both with and without pesticide exposure [OR=1.72 (95% CI 1.21-2.45) and OR=1.43 (95% CI: 1.12-1.83), respectively] (McDuffie HH, et.al, 2009). In this same case-control study six pesticides/pesticide analytes also showed a significant association with NHL [beta-hexachlorocyclohexane, p, p'- dichloro-diphenyl-dichloroethylene (DDE), hexachlorobenzene, mirex, oxychlordane and transnonachlor] (Spinelli et al., 2007). The strongest association was found for oxychlordane, a metabolite of the pesticide chlordane (highest vs. lowest quartile OR=2.68, 95% CI 1.69-4.2). These finding were not confirmed in a recent analysis of plasma samples from 174 NHL cases and 203 controls from France, Germany and Spain. The risk of NHL did not increase with

Comment [AB55]: I am not sure you want to talk about pathways. This assumes that the links observed here are real. Perhaps the wide array of function groups and chemical classes is just noise. You might try to dissect the individual histologies in this "Other B-cell" to see if any one stands out with a particular pesticide

Comment [AB56]: Check to make sure 2,4-D was banned during the time of pesticide use by people in Enksson's study. My impression is that it just was not used much in Scandinavia, but was not banned until later

Comment [AB57]: Not sure we need this sentence. Certainly should not lead with it because family history was not evaluate our NHL study.

plasma levels of hexachlorobenzene, beta-hexachlorobenzene or DDE (Cocco P et al., 2008). In our study NHL was associated with lindane but no excess risk was observed for chlordane and no excess risk was observed among those with a family history of lymphoma. The other chemicals evaluated in the Canadian six province study were not evaluated in the AHS cohort.

New evidence linking NHL with chlorinated pesticide use (Brauner EV, et al., 2012) and a study linking the number of different pesticides used with NHL (Hohenadel K et al., 2011) are somewhat supported by our findings in the AHS cohort. While the number of different pesticides used overall was not associated with NHL risk in the AHS, a significant increase in the CLL/SLL/MCL sub-group of NHL was observed with the number of different chlorinated pesticides used and the number of different organophosphate chemicals used. A similar pattern of increase risk was observed in the other B-cell lymphoma subgroup of NHL with an increasing number of triazine/triazone pesticides used.

A strength of this investigation is that a relatively large population of licensed pesticide applicators provided reliable information regarding their pesticide application history (Blair et al. 2002; Coble et al. 2011, should cite Jane's paper on reliability also). In the AHS, a priori derived algorithm scores that incorporated several exposure determinants were <u>found to be able toused to</u> predict urinary pesticide levels (Thomas et al., Coble 2011). Few? studies of pesticide use with a prospective design have been large enough or had sufficiently detailed exposure information, to evaluate the potential link between NHL, NHL subtypes and specific pesticide exposures <u>(Are there any other prospective studies that could look at specific pesticides?)</u>. Also, because occupational pesticide users are seldom exposed to a single agent, we controlled for the total pesticide exposure days and total pesticide exposure days by chemical/functional class and found

Comment [lbf58]: Expand to discuss what these actually show—similar to ours? Not similar to ours? Comment [a59]: Modified sentence in response to comment

Comment [AB60]: I have a hard time following the discussion. I wonder if it might not be clearing if the link to previous literature is done pesticide by pesticide. Then you could indicate what is found here and follow that with findings for that pesticide in the literature. This means previous studies could be cited numerous times, but it would be easier to see the relationship between our findings and those from other studies for individual pesticides.

no meaningful change in the associations. Additionally, potential confounding of pesticides by other occupational exposures was reported to be minimal in the AHS (Coble et al., 2002) and adjustment for various agricultural exposures did not fundamentally change calculated RR for NHL from various pesticide exposures. - (Mention ability to control of possible non-occupational confounders, use of incidence rather than mortality)

Although this is a large prospective study, <u>there are limitationslimitations should be</u> acknowledged. Cell-type information in the AHS was obtained from the cancer registry database and did not involve pathologic re-review of diagnostic slides. Other limitations including a small number of exposed cases for certain chemical of interest.

Need to add a paragraph of exposure assessment. Discuss the information on our exposure scale in relation to the monitoring work. Discuss the likely magnitude of misclassification and its likely impact on the estimates of RR. Might also want to say something about multiple exposures. Cannot look only at a single exposure. This is an issue raised by critics. Just as well address it here.

<u>AB</u> – This next paragraph seems part of the conclusions. I would try to merge it with the conclusions paragraph.

In our study no pesticide had a significant exposure response pattern with either diffuse large Bcell lymphoma or follicular B-cell lymphoma, although significant <u>relativepoint estimates of</u> risk<u>s</u> were identified for butylate (a carbamate herbicide), terbufos (an organophosphate insecticide), and methyl bromide (an organic halide)(<u>Not clear what you are trying to say here –</u> <u>No exposure-response pattern. but significant RRs.</u>). Previously, NHL subtypes with t (14;18) translocations were associated with the chlorinated insecticides dieldrin, lindane, and toxaphene **Comment [AB61]:** I have a real problem with this approach and the interpretation of the findings from it. Is total pesticide exposure days associated with NHL? If not, then it clearly does not control from individual pesticides because some individual pesticides are associated with NHL. This would work if most pesticides were associated with NHL, but most are not Thus, this total pesticide scale is so water down that it cannot control for anything This said, I doubt that there is confounding among the pesticides, but we cannot us this approach as evidence for no confounding. The most straightforward, and usual approach, is to adjust the RR for one pesticide by each individual pesticide thought to be a potential confounder

Comment [AB62]: I do not think I would list this. These are data that are used to establish cancer patterns by the NCI. I think the reliability/validity of the diagnosis from tumor registries is well accepted.

Comment [AB63]: But there were borderline trends for these subtypes and the triazine herbicide atrazine (chiu BCH et al., 2006 and Chiu BCH and Blair A 2009). We were unable to evaluate translocations in this analysis. Although it is possible that t (14;18) translocations are an initiating event of a causative cascade leading to an NHL subtype, follicular lymphoma (FL), much more work needs to be done to establish this etiologic pathway. (Not sure mentioning t(14:18) is worthwhile here. This study sheds no light on this issue. This point might be combined in a paragraph that discusses future research, but it does not fit by itself)—.

Conclusion:

(I do not think you should start the conclusion with comments about subtypes. Start with NHL overall. In summary, our results suggest that there is subtype specificity in associations between NHL and pesticides exposures. The varying etiology of NHL sub-types may have masked real associations between pesticides and NHL in previous studies where NHL sub-type information was not available (Not sure how varying etiology by subtype would mask associations with NHL overall. If each study had all the subtypes then either the subtype links power through to overall NHL or they do not. The reverse is true. Looking only at NHL overall would hide associations with specific subtypes.). Although the epidemiological evidence for associations between specific pesticides and specific cell types is growing (probably should cite the other papers that have information on specific pesticides and subtypes), the observation that pesticides of different chemical and functional classes and different known toxicological properties are associated with the same cell type (Is it know that different pesticides are associated with the same cell type?) indicates that relatively little is known about the biological/toxicological mechanisms by which these compounds may be contributing to this disease. Cautious interpretation of these results is advised since the number of exposed-cases for

20

each subgroup of NHL in the AHS is still relatively small. (Overall I think the conclusion is too

strong. It seems to say that the links between specific pesticides and certain NHL subtypes

observed in this study are real and this is why we do not understand the mechanisms for

pesticides causing cancer. The findings here are interesting, but they are leads to be confirmed.

I do not think they are strong enough to be making statements about what this says about

mechanisms. I think the tone should be - few studies have been able to look at specific

pesticides and NHL subtypes. What we found is interesting. Need to see if other studies will

have similar findings. I may be in a minority about this, but I would like to have a discussion

about this on an EC call.)

Acknowledgements

Author Affiliations: Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland

This work was supported by the Intramural Research Program of the National Institutes of Health, NCI, Division of Cancer Epidemiology and Genetics (Z01CPxxxxx) and the National Institutes of Environmental Health Science (Z01 xxxxxx). Collection of cancer incidence data was supported in Iowa by contract numbers HHSN261201000032C, N)1-PC-35143 and N01-PC-67008 and in North Carolina by agreement (XXXX).

Comment [AB64]: This affiliation does not cover ally coauthors. Don't we usually put some comment of appreciation to the participants in the AHS in the acknowledgements?

Comment [a65]: Get correct contract numbers here

The authors have no conflicts of interest in connection with this manuscript.

21

References:

1. Agopian J, Navarro JM, Gac AC, Lecluse Y, Briand M, Grenot P, Gauduchon P, Ruminy P, Lebally P, Nadel B, and Roulland S. Agricultural pesticide exposure and the molecular connection to lymphomagenesis. *J Exp Med.* 2009; 206 (7):1473-1483

2. Alavanja MCR, Sandler DP, McMaster SB, Zahm SH, McDonnell CJ, Lynch CF, Pennybacker M, Rothman N, Dosemeci M, Bond AE, Blair A. The Agricultural Health Study. Environ Health Perspect 1996; 104:362-369.

3. Alavanja MCR, Sandler DP, McMaster SB, Zahm SH, McDonnell CJ, Lynch CF, Pennybacker M, Rothman N, Dosemeci M, Bond AE, Blair A. The Agricultural Health Study. Environ Health Perspect 1996; 104:362-369.

4. Alavanja M, Bonner M. Occupational pesticide exposure and cancer risk. A review. J. Toxicol Environ Health B Critic Review. 2012; 1594):238-263.

5. Beane Freeman L E, DeRoos AJ, Koutros S, Blair A, Ward MH, Alavanja MCR, Hoppin JA. Poultry and livestock exposure and cancer risk among farmers in the agricultural health study. *Cancer Causes Control* 2012; 23:663-670.

Blair A, Malker H, Cantor KP, Burmeister L, Wikland K. Cancer among farmers: a review. Scand Work Environ Health 1985:11:397-407.

Blair A, Zahm SH, Pearce NE, Heineman EF, Fraumeni JF Jr. Clues to cancer etiology from studies of farmers. Scand J Work Environ Health 1992;7:532-540.

6. Blair A, Dosemeci M, Heineman EF. Cancer and other causes of death among male and female farmers from twenty-three states. *Am J Ind Med.* 1993; 23:729-742.

7. Blair A. Tarone R, Sandler D, Lynch CF, Rowland A, Winterstein W, et al., 2002. Reliability of reporting on life-style and agricultural factors by a sample of participants in the Agricultural Health Study from Iowa. Epidemiology 2002;13(1):94-99.

8. Boers D, Portengen L, Turner WE, Bas Bueno-de-Mesquita H, Heedrick D, Vermeulen R. Plasma dioxin levels and cause-specific mortality in an occupational cohort of workers exposed to chlorphenoxy herbicides, chlorphenols, and contaminants. *Occup Environ Med.* 2012;69;113-118.

9. Brauner EV, Sorensen MA, Gaudreau E, LeBlanc A, Erikson KT, Tjonneland A, Overvard K, Raaschou-Nielsen O. A prospective study of organochlorines in adipose tissue and risk of non-Hodgkin lymphoma. *Environ Health Perspect*. 2012; 120(1): 105-111.

10. Cattillo JJ, Dalia S. Cigarette smoking is associated with a small increase in the incidence of non Hodhkin lymphoma: a meta analysis of 24 observation studies. *Leukemia & Lymphoma* 2012(10), 1911-1919.

11. Cantor KP, Blair A, Everett G, Gibson R, Burmeister LF, Brown LM. Pesticides and other agricultural risk factors for non-Hodgkin's lymphoma among men in Iowa and Minnesota. *Can Re*. 1992;52:2447-2452.

12. Chiu BCH, Dave BJ, Blair A, Gapstur SM, Zahm SH, and Weisenberger DD. Agricultural pesticide use and risk of t(14;18)-defined subtypes of non-Hodgkin lymphoma. *Blood* . 2006; 108 (4):1363-1369.

13. Chiu BCH, Blair A. Pesticides, chromosomal aberrations, and non-Hodgkin's lymphoma. J Agromedicine. 2009; 14 (2):250-255.

14. Coble J, Hoppin JA, Engel L, Elci OC, Dosemeci M, Lynch CF, et al. 2002. Prevalence of exposure to solvents, metals, grain dust, and other hazards among farmers in the Agricultural Health Study. J Exp Anal Environ Epidemiol 12(6):418-426.

15. Coble J, Thomas KW, Hines CJ, Hoppin JA, Dosemeci M, Curwin B, Lubin JH, Beane Freeman L, Blair A, Sandler DP, Alavanja MCR. An updated algorithm for estimation of pesticide exposure intensity in the Agricultural Health Study. Int J Environ Res Public Health. 2011;8(12):4608-4622.

16. Cocco P, Brennan P, Ibba A, de Sanjose Llongueras S, Maynadie M, Nieters A, Becker N, Ennas MG, Tocco MG, Boffetta P. Plasma polychlorobiphenyl and organochlorine pesticide level and risk of major lymphoma subtypes. *Occup Environ Med* 2008;65:132-140.

17. Cocco P, Satta G, Dubois S, Pilli C, Pillieri M, Zucca M, Mannetje AM, becker N, Benavente Y, de Sanjose' S, Foretova L, Staines A, Maynadie M, Nieters A, brennan P, Milligi L, Ennas MG, Boffetta P. Occupational Envir Med 2013; 70(2):91-98.

Colt JS, Davis S, Severson RK, Lynch CF, Cozen W, Camann D, Engels EA, Blair A, Hartge P. Resideential insecticide use and risk of non-Hodgkin's lymphoma. Cancer Epidemiol Biomarkers Prevent 2006;15:251-257.

18. Dich J, Zahm SH, Hanberg A, Adami HO. Pesticides and cancer etiology from studies of farmers [review]. *Cancer Causes Control* 1997;8:420-443.

19. Eriksson M, Hardell L, Carlberg M, and Akerman M. Pesticide exposure as risk factors for non-Hodkin lymphoma including histopathological subgroup analysis. *Int J Cancer.* 2008;123 (7):1657-1663.

20. Fuscoe J C. Simultaneous quantification of t(14;18) and HPRT exon 2/3 deletions in human lymphocytes. *Methods Mol Biol* . 2005; 291: 171-178.

21. Hardell L, Eriksson M, Lenner P, Lundgren E. Malignant lymphoma and exposure to chemicals, especially. Organic solvents, chlorophenols and phenoxy acids: a case-control study. *Br J Cancer* 1981;43:169-176.

22. Helthshe SL, Lubin JH, Koutros S, Coble JB, Ji B-T, Alavanja MCR, Blair A, Sandler DP, Hines CJ, Thomas KW, barker J, Andreotti G, Hoppin JA, Bean Freeman LE. Using multiple imputation to assign pesticide use for non-respondents in the follow-up questionnaire in the Agricultural Health Study. J. Exp Sci Environ Epidemiol 2012:22(4):409-416.

23. http://seer.cancer.gov/lymphomarecode

24. Hoar SK, Blair A, Holme FF, Boysean CD, Robel RJ, Hoover R, Fraumeni JF Jr. Agricultural herbicide use and risk of lymphoma and soft-tissue sarcoma. *JAMA*. 1986;256(9): 1141-1147.

25. Hohenadel K, Harris SA, McLaughlin JR, Spinelli JJ, Pahwa P, Dosman JA, Demers PA, Blair A. Exposure to multiple pesticides and risk of non-Hodgkin Lymphoma in men from six Canadian provinces. *Int J Environ Res Public Health*. 2011, 8, 2320-2330.

26. McDuffie HH, Pahwa P, Karunanayake CP, Spinelli JJ, Dosman JA. Clustering of cancer among families of cases with Hodgkin Lymphoma (HL), multiple myeloma (MM), soft tissue sarcoma (STS) and control subjects. BMC Cancer. 2009; 9: 1-9.

27. Merhi M, Raynal H, Cahuzac E, Vinson F, Cravedi JP, and Gamet-Payrastre L. Occupational exposure to pesticides and risk of hematopoietic cancers: meta-analysis of case-control studies. *Cancer Causes Control.* 2007; 18:1209-1226.

Add Miligi et al. 2003. Cited but not listed.

28. Morton LM, Turner JJ, Cerhan JR, Linet MS, Treseler PA, Clarke CA, Jack A, Cozen W, Maynadie' M, Spinelli JJ, Constantini AS, Scarpa A, Zheng T, Weisenburger DD. Blood 20007;110(2):695-708.

Orsi L, Delabre L, Monnereau A, Delval P, Berthou C, Frnaux P, Marit G, Soubeyran P, Huguet F, Milpied N, Leporrier M, Hernon D, Troussard X, Clavel J. Occupational exposure to pesticides and lymphoid neoplasms among men: results of a French case-control study. Occup Environ Med 2009;66:291-298.

29. Pahwa M, Harris SA, Hohenadel K, McLaughlin JR, Spinelli JJ, Pahwa P, Dosman JA and Blair. Pesticides use, immunologic conditions, and risk of non-Hodgkin Lymphoma in Canadian men in six provinces. *Int J Cancer*. 2012; doi: 10.1002/ijc.27522. [Epub ahead of print].

30. Patel AV, Diver WR, Teras LR, Birmann BM, Gapstur SM. Body mass index height and risk of lymphoid neoplams in a large United States cohort. *Leukemia & Lymphoma*, 2013; DOI:10.3109/10428194.2012.742523.

31. Pearce NE, Sheppard RA, Smith AH, Teague CA. Non-Hodgkin's lymphoma and farming: an expanded case-control study. *Int J Cancer* 1987;39:155-161.

32. Percy C, Fritz A, Ries L. Conversion of neoplasms by topography and morphology from the International Classification of Disease for Oncology, second edition, to International Classification of Diseases for Oncology, 3rd ed. Cancer Statistics branch, DCCPS, SEER Program, National Cancer Institute; 2001.

33. Purdue MP, Hoppin JA, Blair A, Dosemeci M, Alavanja MCR. Occupational exposure to organochlorine insecticides and cancer incidence in the Agricultural Health Study. *Int J Cancer*. 2007;120(3):642-649.

34. SAS Institute, Cary, North Carolina {complete reference}

35. Schroeder JC, Olshan AF, Baric A, Dent GA, Weinberg CR, Yount B, Cerhan JR, Lynch CF, Schuman LM, Tolbert PE, Rothman N, Cantor KP, and Blair A. Agricultural risk factors for t(14;18) subtypes of non-Hodgkin's lymphoma. *Epidemiology*. 2001;12:701-709.

36. Shankland KR, Armitage JO, Hancock BW. Non-Hodgkin Lymphoma. *Lancet*. 2012; 380 (9844),848-857.

37. Simard JF, Baecklund F, Chang ET, Baecklund E, Hjalgrim H, Adami OH, Smedby KE. Lifestyle factors, autoimmunne disease and family history in prognosis of non-hodgkin lymphoma overall and subtypes. *Int J Cancer*. 2012 Nov 12 DOI: 10.1002/ijc.27944. {Epub ahead of print}

38. Spinelli JJ, Ng CH, Weber JP, Connors JM, Gascoyne RD, Lai AS, Brooks-Wilson AR, Le ND, Berry BR, Gallagher RP. Organochlorines and risk of non-Hodgkin lymphoma. *Int J Cancer.* 2007; 121(12): 2767-2775.

39. Svec MA, Ward MH, Dosemeci M, Checkoway H, DeRoos AJ. Risk of lymphatic or haematopoietic cancer mortality with occupational exposure to animals or the public. *Occup Environ Med* 2005;62:726-735.

40. Swerdlow SH, Campo E, Harris N, et al (2008) WHO Classification of Tumours of haematopoietic and Lymphoid Tissue. Oxford Uni Pr. ISBN 978-92-832-2431-0.

41. Thomas KW, Dosemeci M, Coble JB, Hoppin JA, Sheldon LS, Chapa G, et al. 2010. Assessment of a pesticide exposure intensity algorithm in the Agricultural Health Study. J Expo Sci Environ Epidemiol 20(6):559-569.

Waddell BL, Zahm SH, Baris D, Weisenburger DD, Holmes F, Burmeister LF, Cantor KP, Blair A. Agricultural use of organophosphate pesticides and the risk of non-Hodgkin's lymphoma among male farmers (United States). Cancer Causes Control 2001:12:509-517.

42. Woods JS, Polissar L, Severson RK, Heuser LS, Kulander BG. Soft tissue sarcoma and non-Hodgkin's lymphoma in relation to phenoxyherbicide and chlorinated phenol exposure in western Washington. *J Natl Cancer Institute* 1987;78:899-910.

43. Zahm SH, Weisenburger DD, Babbitt PA, Saal RC, Vaught JB, Cantor KP, Blair A. A casecontrol study of non-Hodgkin's lymphoma and the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in eastern Nebraska. *Epidemiol*. 1990;1(5):349-356.

12/5/2016

.

12/5/2016

28

	All NHL cases	Cohort Person- years.	RR ¹	95% CI	
Age at Enrollment					
<45	51	368,766.80	1.0 (ref)		
45-49	34	88,648.48	2.8	1.8-4.3	
50-54	51	75,781.37	4.9	3.3-7.2	
55-59	59	67,981.37	6.3	4.3-9.1	
60-64	46	53,346.73	6.2	4.2-9.3	
65-69	46	34,532.71	9.6	6.5-14.4	
≥70	46	25,713.12	12.9	8.7-19.3	
Gender					
Male	328 (ref)	695,190.90	1.0 (ref)		
Female	5	19,579.34	0.5	0.2-1.3	
State					
IA	213 (ref)	461,697.24	1.0 (ref)		
NC	120	253,072.27	0.8	0.6-0.97	
License type					
Private	318	652,562.25	1.0 (ref)		
Commercial	15	62,207.89	0.9	0.5-1.5	
Education					
<12 yrs.	57	61,656.39	1.0 (ref)		
HS/GED	143	326,344.92	0.8	0.6-1.1	
>12 yrs.	121	297,437.85	1.0	0.7-1.4	
Smoking Status					

29

Never	165	371,929.66	1.0 (ref)		,
Former	127	203,445.28	0.93	0.7-1.2	DAR
Current	29	116,254.87	0.6	0.4-0.9	
Body Mass Index (BMI)					-
<25	58		1.0 (ref)		
25-<30	138		1.1	0.8-1.5	
<u>></u> 30	61		0.94	0.7-1.4	
Alcohol consumption per week	-				
None	128	212,928.70	1.0 (ref)		
<once a="" td="" week<=""><td>89</td><td>217,015.35</td><td>1.0</td><td>0.8-1.4</td><td></td></once>	89	217,015.35	1.0	0.8-1.4	
≥once a week	89	240,745.51	1.0	0.8-1.4	
First degree relative with lymphoma					
No	291	639,748.82	1 (ref)		
Yes	7	12,606.85	1.1	0.5-2.4	E.c.

¹ All variables except age are age adjusted (<45,45-49,50-54,55-59,60-64,65-69,≥70)

² Numbers do not sum to totals (333 cases, 714,770 person-years) due to missing data.

30

Table 2. Pesticide exposure (Lifetime Days [LD] & intensity weighted Lifetime Days [IWLD]) and the age- adjusted risk of NHL incidence (1993 through 2008)						
Insecticides						
Pesticide (chemical-functional class) [median days of lifetime exposure for each category]	NHL Cases	RR ¹ (95%) by Total Days of Exposure	NHL Cases	RR ¹ (95% CI) Intensity-weighted days of exposure		
Carbaryl (carbamate-insecticide)						
None	81	1.0 (ref)	81	1.0 (ref)		
Low [8.75]	31	0.9 (0.5-1.5)	27	0.9 (0.5-1.5)		
Medium [56]	23	0.7 (0.4-1.1)	26	0.8 (0.5-1.4)		
High [124.5]	25	0.9 (0.6-1.5)	26	0.8 (0.5-1.3)		
		P trend=0.86		P trend=0.47		
Malathion (organophosphorous-insecticide)						
None	55	1.0 (ref)	55	1.0 (ref)		
Low [8.75]	46	1.0 (0.7-1.5)	37	1.0 (0.7-1.6)		
Medium [42.75]	28	0.7 (0.4-1.2)	38	0.8 (0.5-1.3)		
High [103.75]	36	1.0 (0.7-1.6)	35	0.91 (0.6-1.4)		
		P trend=0.74		P trend=0.71		
Terbufos (organophosphorous-insecticide)						
None	157	1.0 (ref)	157	1.0 (ref)		
Low [24.5]	58	1.4 (1.1-1.9)	43	1.3 (0.92-1.8)		
Medium [56]	38	2.0 (1.4-2.8)	43	2.0 (1.4-2.8)		
High [116]	34	1.2 (0.8-1.7)	42	1.2 (0.9-1.8)		

Table 2. Pesticide exposure (Lifetime Days [LD] & intensity weighted Lifetime Days [IWLD]) and the age

31

		P trend=0.23		P trend=0.19	
		Chlorinated Insecticide			
Chlordane (Chlorinated Insecticide)					
None	223	1.0 (ref)	223	1.0 (ref)	
Low [8.75]	23	0.9 (0.6-1.4)	13	1.1 (0.7-2.0)	
Medium [20]	6	1.7 (0.8-3.8)	13	0.9 (0.5-1.6)	
High [38.75]	9	0.8 (0.4-1.6)	12	0.9 (0.5-1.6)	
		P trend=0.89		P trend=0.77	
DDT (Chlorinated Insecticide)					
None	194	1.0 (ref)	194	1.0 (ref)	
Low [8 75]	20	0.8 (0.5-1.3)	19	0.9 (0.6-1.5)	
Medium [56]	18	0.9 (0.6-1.6)	18	0.8 (0.5-1.4)	
	17	1.5 (0.0.2.5)	10	1.4 (0.8.2.2)	
High [116]	17	1.5 (0.9-2.5)	18	1.4 (0.8-2.2)	
		P trend=0.14		P trend=0.28	
Lindane (Chlorinated Insecticide)					
None	209	1.0 (ref)	209	1.0 (ref)	
Low [17.75]	11	1.0(0.5-2.0)	10	1.1(0.6-2.0)	
Medium [56]	10	1.2(0.6-2.3)	11	1.4(0.7-2.6)	
High [116]	10	2.7(1.4-5.1)	9	1.9(0.95-3.7)	
		P trend=0.003		P trend=0.04	
		Herbicides			
Alachlor (acetamide-herbicide)					
None	138	1.0 (ref)	138	1.0 (ref)	

Comment [lbf66]: I like this heading—suggest using them throughout the tables and then deleting the chemical class in parentheses

32

Low [24.5]	65	1.0 (0.7-1.3)	53	1.0 (0.7-1.3)
Medium [116]	49	0.9(0.6-1.2)	50	0.9 (0.6-1.2)
High [224.75]	43	1.3(0.9-1.9)	51	1.2 (0.9-1.7)
		P trend=0.12		P trend=0.19
Atrazine				
(triazine-herbicide)				
None	85	1.0 (ref)	85	1.0 (ref)
Low [38.75]	88	1.2(0.8-1.7)	79	1.1(0.8-1.6)
Medium [114.5]	72	1.3(0.96-1.9)	78	1.4(1.0-2.0)
High [224.75]	77	1.2(0.9-1.6)	78	1.2(0.8-1.6)
		P trend=0.56		P trend=0.68
Butylate (thiocarbamate-herbicide)				
None	107	1.0 (ref)	107	1.0 (ref)
Low [24.5]	22	1.0(0.6-1.5)	16	0.9(0.5-1.5)
Medium [56]	18	2.8(1.7-4.7)	16	2.1(1.2-3.5)
High [56]	7	1.1(0.5-2.4)	15	1.5(0.9-2.6)
		P trend=0.004		P trend=0.04
Dicamba (benzoic-herbicide)				
None	121	1.0 (ref)	121	1.0 (ref)
Low [20]	66	1.3(0.94-1.8)	56	1.2(0.9-1.8)
Medium [56]	52	1.5(1.1-2.1)	54	1.5(1.1-2.1)
High [128.5]	47	1.2(0.9-1.7)	55	1.3(0.9-1.8)
		P trend=0.38	P trend	l=0.23
2,4-D (phenoxy-herbicide)				

•

None	71	1.0 (ref)	71	1.0 (ref)
Low [46.75]	83	1.0(0.7-1.4)	82	1.0(0.7-1.4)
Medium [133.35]	83	1.2(0.8-1.6)	83	1.1(0.8-1.6)
High [371.75]	82	1.0(0.7-1.4)	81	1.0(0.7-1.4)
		P trend=0.96		P trend=0.94
ЕРТС				
(thiocarbamate-herbicide)				
None	229	1.0 (ref)	229	1.0 (ref)
Low [8.75]	28	1.3(0.9-2.0)	20	1.3(0.8-2.1)
Medium [50.75]	14	1.0(0.6-1.7)	20	1.2(0.7-1.8)
High [108.5]	18	1.3(0.8-2.0)	19	1.1(0.7-1.8)
		P trend=0.35		P trend=0.54
Glyphosate				
(phosphinic acid-herbicide)				
None	70	1.0 (ref)	70	1.0 (ref)
Low [20]	89	0.8(0.6-1.2)	83	0.9(0.6-1.3)
Medium [65.75]	78	0.8(0.6-1.2)	84	0.8(0.5-1.1)
High [173.25]	83	1.0(0.7-1.4)	82	1.0(0.7-1.3)
		P trend=0.58		P trend=0.81
Imazethapyr				
(imidazolinone-herbicide)				
None	181	1.0 (ref)	181	1.0 (ref)
Low [8.75]	39	0.9(0.6-1.3)	36	1.0(0.7-1.4)
Medium [28.75]	34	0.9(0.6-1.4)	37	0.9(0.6-1.3)
High [56]	35	1.2(0.8-1.7)	35	1.2(0.8-1.7)
		P trend=0.54		P trend=0.55
Metribuzin				

12/5/2016

.

(triazine-herbicide)					
None	94	1.0 (ref)	94	1.0 (ref)	
Low [8.75]	28	1.0 (0.7-1.7)	21	1.2(0.7-2.0)	
Medium [50.75]	15	0.9(0.5-1.6)	23	1.1(0.7-1.7)	
High [56]	20	1.7(1.0-2.7)	19	1.3(0.8-2.2)	
		P trend=0.06		P trend=0.28	
Trifluralin					
(dinitroaniline-herbicide)					
None	140	1.0 (ref)	140	1.0 (ref)	
Low [25]	51	1.0 (0.7-1.4)	50	1.0(0.7-1.4)	
Medium [108.5]	58	1.1(0.8-1.5)	52	1.1(0.8-1.5)	
High [224.75]	43	1.0(0.7-1.3)	48	0.9(0.7-1.3)	
		P trend=0.81		P trend=0.65	

¹Age adjusted (<45,45-49,50-54,55-59,60-64,65-69,≥70)

.

² Numbers do not sum to total number of NHL cases (n=333) due to missing data.

35

			Insecticides, fur	gicide	and fumigant				
	CLL, SLL, MCL Diffuse Large B-cell Follicular B-cell Other B-cell type								
	RR ¹ (95% CI)	n	RR ¹ (95% CI)	n	RR ¹ (95% CI)	n	RR ¹ (95% CI)	N	
Carbaryl				-		-			
None	1.0 (ref)	32	1.0 (ref)	23	1.0 (ref)	9	1.0 (ref)	9	
Low	1.1(0.5-2.2)	15	0.7(0.3-1.5)	10	1.1(0.3-4.0)	5	Xxx	6	
Medium	1.0(0.2-4.2)	2	1.3(0.6-3.0)	8	1.8(0.6-5.9)	4	Xxx	0	
High	0.4(0.2-0.8)	8	1.5(0.7-3.5)	8	1.3(0.4-4.1)	4	xxx-	1	
	P trend=0.007	1	P trend=0.19		P trend=0.66		P trend=xxx		
Malathion									
None	1.0 (ref)	21	1.0 (ref)	16	1.0 (ref)	5	1.0 (ref)	6	
Low	0.94(0.5-1.8)	17	0.8(0.4-1.7)	16	1.0(0.3-3.6)	6	xxx-	8	
Medium	0.8(0.4-1.7)	11	0.9(0.4-2.1)	8	1.2(0.3-4.3)	5	-XXX	0	
High	0.8(0.4-1.7)	11	1.7(0.8-3.8)	11	1.5(0.4-4.9)	5	-XXX	3	
	P trend=0.52	-	P trend=0.07		P trend=0.48		P trend=xxx		
Terbufos		T		1				1	
None	1.0 (ref)	53	1.0 (ref)	47	1.0 (ref)	26	1.0 (ref)	10	
Low	1.8(1.0-3.1)	17	0.9(0.4-1.7)	12	2.5(1.1-5.4)	8	2.3 (0.8-6.6)	6	
Medium	2.2(1.3-3.6)	21	2.2(1.2-4.2)	12	1.8(0.7-4.3)	7	3.1(1.1-9.2)	5	
High	1.4(0.8-2.6)	13	1.1(0.5-2.3)	10	0.7(0.3-1.8)	6	4.1(1.4-11.9)	5	
	P trend=0.16		P trend=0.34	1	P trend=0.54		P trend=0.01		
	1		Chlorina	ted pe	sticides		1		
Chlordane				Τ					
None	1.0 (ref)	74	1.0 (ref)	68	1.0 (ref)	35	1.0 (ref)	21	

Comment [lbf67]: Insert the codes here and then you can remove them from the text.

.

Comment [lbf68]: Would suggest using the headings as suggest in Table 2 to orient people to chemical class.

36

12/5/2016
2	7	
3	1	

1	2	15	12	01	6
T	4	13	4	υı	0

LOW	1.4 (0.7-2.7)	10	0.8 (0.4-2.0)		6	1.6 (0.4-6.9)	2	Xxx	1
Medium	2.8 (0.9-9.0)	3	1.8 (0.6-5.1)		4	0.8 (0.2-3.4)	2	Xxx	2
High	0.8 (0.3-2.7)	3	1.0 (0.2-4.1)		2	0.7 (0.1-5.1)	1	Xxx	0
	P trend=0.56		P trend=0.0	P trend=0.09		P trend=0.92		P trend=xxx	1
DDT									1
None	1.0 (ref)	62	1.0 (ref)		53	1.0 (ref)	36	1.0 (ref)	22
Low	0.91 (0.4-2.0)	8	1.1 (0.5-2.6)		7	1.1 (0.4-3.4)	4	0.4 (0.1-1.9)	2
Medium	1.1 (0.5-2.4)	8	2.3 (1.0-5.4)		7	0.3 (0.1-2.6)	1	1.4 (0.3-6.2)	2
High	2.3 (1.0-5.3)	7	1.2 (0.5-2.9)		6	0.7 (0.1-5.0)	1	0.9 (0.1-6.7)	1
	P trend=0.45		P trend=0.3	1	-	P trend=0.72		P trend=0.77	
Lindane					-				
None	1.0 (ref)	41	1.0 (ref)		39	1.0 (ref)	14	1.0 (ref)	14
Low	1.6(0.7-3.6)	8	0.7(0.2-3.0)		9	2.7(0.8-9.4)	3	Xxx	1
Medium	1.1(0.3-4.8)	3	1.1(0.3-3.7)		6	3.6(0.8-15.9)	2	Xxx	0
High	2 8(1 5 0 6)	5	1 3(0 2-9 7)		5	24(0 5 10 4)	2	Xxx	0
Ingn	3.0(1.3-3.0)	5	1.5(0.2-5.7)		5	2.4(0.3-10.4)	-	2 KAN	0
Ingn	P trend=0.005		P trend=0.25	5		P trend=0.25	-	P trend=xxx	
Ingn	P trend=0.005		P trend=0.25	Herbi	icid	P trend=0.25		P trend=xxx	
Alachlor	P trend=0.005		P trend=0.25	5 Herbi	icid	P trend=0.25		P trend=xxx	
Alachlor (acetanilide)	P trend=0.005		P trend=0.25	Herb	icid	P trend=0.25		P trend=xxx	
Alachlor (acetanilide)	P trend=0.005	53	P trend=0.25	5 Herbi	icid	P trend=0.25 es	22	P trend=xxx 1.0 (ref)	9
Alachlor (acetanilide) None Low	P trend=0.005	53	P trend=0.25	5 Herbi 42 13	icid	P trend=0.25 es 0 (ref) 3(0.6-2.6)	22	P trend=xxx 1.0 (ref) 1.6 (0.6-4.4)	9
Alachlor (acetanilide) None Low Medium	P trend=0.005 1.0 (ref) 0.9(0.6-1.5) 0.8(0.5-1.4)	53 53 23 18	P trend=0.25 1.0 (ref) 0.9(0.5-1.6) 0.7(0.4-1.3)	5 Herbi 42 13 14	icid	P trend=0.25 es 0 (ref) 3(0.6-2.6) 8(0.3-1.6)	22 10 9	P trend=xxx 1.0 (ref) 1.6 (0.6-4.4) 2.1 (0.8-5.3)	9 7 10
Alachlor (acetanilide) None Low Medium High	P trend=0.005 P trend=0.005 1.0 (ref) 0.9(0.6-1.5) 0.8(0.5-1.4) 1.1(0.6-2.1)	53 53 23 18 14	P trend=0.25 1.0 (ref) 0.9(0.5-1.6) 0.7(0.4-1.3) 0.8(0.4-1.6)	5 Herbi 42 13 14 10	icid	P trend=0.25 es 0 (ref) 3(0.6-2.6) 8(0.3-1.6) 1(0.4-2.7)	22 10 9 6	P trend=xxx 1.0 (ref) 1.6 (0.6-4.4) 2.1 (0.8-5.3) 4.0 (1.2-13.0)	9 7 10 4
Alachlor (acetanilide) None Low Medium High	P trend=0.005 P trend=0.005 1.0 (ref) 0.9(0.6-1.5) 0.8(0.5-1.4) 1.1(0.6-2.1) P =0.67	53 53 23 18 14	P trend=0.25 1.0 (ref) 0.9(0.5-1.6) 0.7(0.4-1.3) 0.8(0.4-1.6) P trend=0.52	5 Herbi 42 13 14 10	icid	P trend=0.25 es 0 (ref) 3(0.6-2.6) 8(0.3-1.6) 1(0.4-2.7) trend=0.99	22 10 9 6	P trend=xxx P trend=xxx 1.0 (ref) 1.6 (0.6-4.4) 2.1 (0.8-5.3) 4.0 (1.2-13.0) P trend=0.02	9 7 10 4
Alachlor (acetanilide) None Low Medium High Atrazine (triazine)	P trend=0.005 P trend=0.005 1.0 (ref) 0.9(0.6-1.5) 0.8(0.5-1.4) 1.1(0.6-2.1) P =0.67	53 53 23 18 14	P trend=0.25 P trend=0.25 1.0 (ref) 0.9(0.5-1.6) 0.7(0.4-1.3) 0.8(0.4-1.6) P trend=0.52	5 Herbi 42 13 14 10	icid 1.0 1. P	2.4(0.3-10.4) P trend=0.25 es 0 (ref) 3(0.6-2.6) 8(0.3-1.6) 1(0.4-2.7) trend=0.99	22 10 9 6	P trend=xxx P trend=xxx 1.0 (ref) 1.6 (0.6-4.4) 2.1 (0.8-5.3) 4.0 (1.2-13.0) P trend=0.02	9 7 10 4

•

Low	1.0 (0.6-1.7)	29	1.1(0.6-2.0)	21	1.7(0.7-3.9)	17	2.4 (0.9-6.8)	13
Medium	1.2 (0.7-2.0)	25	1.1(0.6-2.2)	23	1.3(0.5-3.4)	10	1.7(0.5-5.9)	6
High	1.0 (0.6-1.7)	26	0.9(0.5-1.7)	19	1.4(0.6-3.4)	13	3.6 (1.2-10.8)	9
	P trend=0.90		P trend=0.62		P trend=0.83		P trend=0.06	
Butylate (thio- carbamate-)								
None	1.0 (ref)	40	1.0 (ref)	33	1.0 (ref)	14	1.0 (ref)	8
Low	0.8(0.4-1.9)	7	1.1(0.4-3.0)	4	0.8(0.2-2.9)	3	3.0 (0.8-11.3)	3
Medium	3.5(1.6-7.6)	8	1.2(0.4-3.5)	4	6.3(2.1-19.3)	4	4.0(1.2-13.7)	4
High	1.3(0.4-4.3)	3	0.8(0.2-2.5)	3	1.0(0.1-7.9)	1	2.4 (0.3-19.7)	1
	P trend=0.04	1	P trend=0.69	59 P trend=0.07			P trend=0.0499	
(Chlorinated Phenoxy)								
None	1.0 (ref)	25	1.0 (ref)	23	1.0 (ref)	9	1.0 (ref)	5
Low	0.90(0.5-1.5)	31	0.9(0.5-1.7)	23	1.8(0.8-4.4)	14	1.9 (0.6-6.2)	10
Medium	1.2(0.7-2.0)	29	1.0(0.6-1.9)	21	1.0(0.4-2.4)	14	1.7 (0.5-5.6)	9
High	1.3(0.7-2.2)	29	0.7(0.4-1.3)	21	1.4(0.6-3.4)	12	2.2 (0.7-7.2)	9
	P trend=0.20	_	P trend=0.23	-	P trend=0.84		P trend=0.35	
Dicamba (benzoic acid)								
None	1.0 (ref)	39	1.0 (ref)	40	1.0 (ref)	22	1.0 (ref)	6
Low	1.5 (0.9-2.6)	23	1.1 (0.6-2.1)	12	1.5(0.7-3.4)	9	3.2 (1.0-9.9)	8
Medium	1.5 (0.9-3.4)	20	1.1 (0.6-2.1)	13	1.8(0.90-4.0)	10	5.2(1.6-16.6)	7
High	2.0 (1.1-3.4)	20	0.7 (0.4-1.4)	11	0.7(0.3-1.5)	8	5.1(1.6-16.1)	7
	P trend=0.03		P trend=0.26	-	P trend=0.32		P trend=0.02	
	1		1					

EPTC (thio- carbamate)								
None	1.0 (ref)	86	1.0 (ref)	62	1.0 (ref)	40	1.0 (ref)	19
Low	1,2(0.6-2.3)	9	1.2(0.6-2.7)	7	xxx	3	2.1 (0.7-6.0)	4
Medium	1.2(0.6-2.5)	8	1.7(0.7-4.2)	5	xxx	0	2.1 (0.6-7.1)	3
High	1.4(0.6-3.4)	5	0.8(0.3-2.3)	4	xxx	1	4.9 (1.4-16.7)	3
	P trend= 0.41		P trend=0.98		P trend=0.10		P trend=0.01	_
Glyphosate (isopropyl- amine)								
None	1.0 (ref)	25	1.0 (ref)	19	1.0 (ref)	13	1.0 (ref)	10
Low	0.6(0.4-1.1)	32	1.3(0.7-2.6)	23	0.7(0.3-1.7)	15	0.4 (0.1-1.2)	9
Medium	1.1(0.6-1.9)	29	1.1(0.5-2.1)	23	0.6(0.2-1.4)	11	0.6 (0.2-1.6)	7
High	1.1(0.6-1.8)	29	0.7(0.4-1.3)	22	0.7(0.3-1.8)	12	0.6 (0.2-1.8)	7
	P trend=0.21	_	P trend=0.05		P trend=0.66		P trend=0.98	
Imazethapyr (imid- azolinone)								
None	1.0 (ref)	68	1.0 (ref)	57	1.0 (ref)	29	1.0 (ref)	12
Low	1.0(0.6-1.8)	16	0.7(0.3-1.4)	10	0.7(0.3-1.7)	6	1.6 (0.6-3.8)	8
Medium	0.8(0.4-1.6)	11	0.6(0.3-1.4)	6	1.1(0.3-3.5)	6	5.2 (1.6-16.6)	4
High	1.2(0.6-2.2)	12	0.5(0.2-1.2)	5	1.0(0.4-2.8)	5	3.2 (1.0-10.0)	4
	P trend=0.71		P trend=0.16	j	P trend=0.90		P trend=0.03	
<u>Metribuzin</u> (Triazone)								
None	1.0 (ref)	30	1.0 (ref)	35	1.0 (ref)	13	1.0 (ref)	9
Low	1.5(0.7-2.9)	11	0.5(0.2-1.4)	5	1.4(0.5-3.9)	5	1.0 (0.2-4.9)	3

•

Medium	2.1(1.1-4.0)	13	0.5(0.1-2.0)	3	0.8(0.2-2.9)	3	2.8 (0.9-8.9)	5
High	1.8(0.6-5.2)	4	0.4(0.1-1.6)	2	1.3(0.2-9.8)	1	-	0
	P trend=0.06		P trend=0.13		P trend=0.88		P trend=0.60	
Trifluralin (dinitro- aniline)								
None	1.0 (ref)	45	1.0 (ref)	43	1.0 (ref)	25	1.0 (ref)	10
Low	1.1(0.7-1.9)	23	0.9(0.5-1.7)	14	0.9(0.4-1.9)	8	1.2 (0.4-3.2)	7
Medium	1.6(0.9-2.6)	21	0.8(0.4-1.7)	11	0.8(0.4-1.8)	8	2.7 (1.0-7.0)	7
High	1.1(0.6-1.9)	15	0.6(0.3-1.2)	11	0.8(0.3-1.9)	7	3.3 (1.2-9.1)	6
	P trend= 0.81		P trend=0.13		P trend=0.62		P trend=0.01	

¹Age adjusted ($<45,45-49,50-54,55-59,60-64,65-69,\geq70$) ² Numbers do not sum to NHL subtype totals due to missing data.

Number pesticides in a pesticide class	All NHL Cases ¹	Cohort Person- Years	RR ²	95% CI
All pesticide				
0-4	36	46,624	1.0 (ref)	
5-8	58	62,304	1.2	(0.8-1.9)
9-11	50	56,373	1.2	(0.8-2.0)
12-16	65	93,714	0.9	(0.5-1.4)
17-20	48	57,874	1.1	(0.7-1.8)
>20	75	71,281	1.1	(0.7-1.8)
			P trend=0.53	
Chlorinated Insecticides				
0	111	344.026	1.0 (ref)	
1	63	131,439	1.1	(0.6-1.9)
2	42	77,989	1.1	(0.6-2.0)
>3	89	122,276	0.9	(0.5-1.7)
		-,	P trend=0.45	
Organophosphate insecticides		1		
0	38	90,621	1.0 (ref)	
1	59	128,694	1.2	(0.7-1.8)
2	69	146,183	1.3	(0.8-2.0)
3	56	133.273	1.1	(0.6-1.8)
>4	107	208,634	1.2	(0.7-2.1)
			P trend=0.59	
Carbamate				
0	104	231.849	1 (ref)	
1	126	294,727	0.7	(0.5-1.0)
>2	89	163,706	0.9	(0.6-1.4)
-			P trend=0.64	(112 113)
Other insecticides				
0	251	532.835	1.0 (ref)	
>1	43	112,489	1.1	(0.6-1.8)
		1	P trend=0.36	
Triazine herbicides				
0	67	161,040	1.0	
1	92	187,057	1.2	(0.6-2.4)
2	78	185,777	1.0	(0.5-2.1)
3	92	173,920	1.4	(0.7-3.0)
			P trend=0.04	
Acetamide				
0	90	206.537	1.0	
1	115	236.407	1.6	(0.8-3.4)
2	102	219 200	17	(0.7-3.7)
-		=17,200	1.7	(0.1 0.1)

Table 4: The number of different pesticides in a pesticide class used and the risk of NHL (95% CI)

.

			P trend=0.10	
Carbamate herbicides				
0	193	414,729	1.0 (ref)	
1	79	179,871	0.8	(0.5-1.2)
2	40	84,589	0.8	0.8 (0.4-1.4)
			P trend=0.80	
Other herbicides				
0	13	25,880	1.0 (ref)	
1-2	67	131,595	1.1	(0.5-2.7)
3-4	76	162,359	1.0	(0.4-2.4)
5-6	78	185,337	1.0	(0.4-2.5)
≥7	97	205,915	1.1	(0.4-2.6)
			P trend=0.19	
Fungicides				
0	203	442,307	1.0 (ref)	
1	73	152,882	1.1	(0.8-1.5)
≥2	52	110,590	1.5	(0.99-2.3)
			P trend=0.31	
Fumigants				
0	240	538,867	1.0 (ref)	
1	73	123,473	1.4	(0.9-2.1)
<u>>2</u>	15	42,165	0.9	(0.4-1.9)
			P trend=0.24	

¹ Numbers do not sum to totals (333 cases, 714,770 person-years) due to missing data ² NHL risks are age adjusted (<45,45-49,50-54,55-59,60-64,65-69,≥70)and adjusted for lifetime days of use of pesticides in the specific pesticide class

	CLL, SLL, PLL, MCL		Diffuse Large I cell	3-	Follicular B-cel	1	Other B-cell types	
	RR ¹ (95% CI)	n						
			Insecticides					
Carbamate insecticides ³								
0	1.0 (ref)	34	1.0(ref)	33	1.0(ref)	12	1.0 (ref)	13
1	0.8 (0.5-1.3)	45	0.7(0.4-1.2)	36	1.5(0.8-3.0)	26	0.3 (0.1-0.8)	7
2-3	1.1 (0.7-1.7)	32	0.7(0.4-1.2)	20	1.2(0.5-2.7)	12	1.2 (0.5-2.5)	13
	P trend= 0.82		P trend=0.21		P trend=0.63		P trend= 0.75	
Chlorinated insecticides ⁴								
None	1.0 (ref)	8	1.0(ref)	16	1.0(ref)	3	1.0 (ref0	6
1	1.6 (0.7-3.8)	17	0.9 (04-1.7)	18	4.1(1.2-14.1)	15	0.9 (0.3-2.7)	7
2	2.2 (0.95-5.0)	19	0.6(0.3-1.3)	10	2.5(0.6-9.6)	7	0.5 (0.1-1.9)	3
3	2.4 (1.2-5.2)	41	0.5(0.3-1.0)	17	1.7(0.5-6.5)	9	0.8 (0.3-2.3)	10
	P trend=0.02		P trend=0.05		P trend=0.73		P trend= 0.48	
Organophosphate Insecticides ⁵								
0	1.0 (ref)	13	1.0 (ref)	14	1.0(ref)	5	1.0	5
1	0.93(0.4-2.0)	15	1.2(0.6-2.4)	21	1.3(0.4-3.9)	8	0.8 (0.2-2.8)	5
2	1.4 (0.7-2.7)	25	1.0(0.5-2.0)	20	1.7(0.6-4.7)	12	1.3 (0.4-4.0)	9
3	1.3 (0.6-2.5)	20	0.8(0.4-1.7)	14	1.4(0.5-4.1)	9	0.5 (0.1-2.1)	3
>4	1.7 (0.92-3.2)	42	0.8(0.4-1.6)	23	1.6(0.6-4.4)	17	1.3 (0.5-3.7)	12

 Table 5. Number of different pesticides used by pesticide type (in the NHL incidence analysis from 1993 through 2008) for B cell sub-types.^{1,2}

-

Comment [lbf69]: Interesting results

P trend $=0.03$		P trend= 0.28		P trend=0.38		P trend=0.67	
				11			
1.0 (ref)	86	1.0 (ref)	71	1.0(ref)	35	1.0 (ref)	22
0.94 (0.6-1.6)	19	0.5(0.2-1.0)	9	1.3(0.6-2.4)	12	1.1 (0.5-2.8)	6
P trend=0.78		P trend= .04		P trend=0.49	6	P trend=0.82	
		Herbicides	-				
	1						
1.0 (ref)	37	1.0(ref)	32	1.0(ref)	14	1.0	6
0.97 (0.6-1.5)	35	1.0(0.6-1.6)	32	1.3(0.7-2.6)	19	1.4 (0.5-4.0)	8
1.2 (0.8-2.0)	39	0.6(0.4-1.1)	18	1.2(0.6-2.4)	15	3.9 (1.2-8.2)	16
P trend=0.35	-	P trend=0.16	-	P trend=0.72	-	P trend= 0.009	
1.0 (ref)	67	1.0(ref)	58	1.0(ref)	27	1.0	16
0.98 (0.6-1.5)	27	0.7(0.4-1.2)	17	1.3(0.7-2.5)	16	1.5 (0.7-3.4)	10
1.5 (0.9-2.5)	17	0.9(0.4-1.7)	9	0.6(0.2-1.8)	3	2.2 (0.9-5.7)	6
P trend=0.29	-	P trend=0.33		P trend=0.71	-	P trend=0.11	
1	1						
1.0 (ref)	6	1.0(ref)	6	1.0(ref)	1	1.0	2
1.2(0.5-2.8)	25	1.0(0.4-2.5)	22	3.2(0.5-27.0)	13	0.6 (0.1-3.1)	4
0.9 (0.4-2.2)	20	1.4(0.6-3.4)	33	2.5(0.3-19.2)	10	0.94(0.2-4.6)	7
1.2 (0.5-2.8)	26	0.7(0.3-1.7)	16	4.0(0.5-29.8)	17	1.2(0.3-5.7)	9
1.7 (0.7-4.1)	38	0.7(0.3-1.7)	16	2.5(0.3-19.3)	11	1.7(0.4-7.6)	12
P trend=0.06		P trend=0.08		P trend=0.84	-	P trend= 0.06	
1.0	29	1.0 (ref)	22	1.0(ref)	6	1.0 (ref)	4
0.8 (0.5-1.4)	24	1.5(0.9-2.6)	34	3.2(1.3-8.0)	20	2.0 (0.6-6.6)	8
	P trend =0.03 1.0 (ref) 0.94 (0.6-1.6) P trend=0.78 1.0 (ref) 0.97 (0.6-1.5) 1.2 (0.8-2.0) P trend=0.35 1.0 (ref) 0.98 (0.6-1.5) 1.5 (0.9-2.5) P trend=0.29 1.0 (ref) 1.2 (0.5-2.8) 0.9 (0.4-2.2) 1.2 (0.5-2.8) 1.7 (0.7-4.1) P trend=0.06 1.0 0.8 (0.5-1.4)	P trend =0.03 1.0 (ref) 86 0.94 (0.6-1.6) 19 P trend=0.78 19 P trend=0.78 19 I.0 (ref) 37 0.97 (0.6-1.5) 35 1.2 (0.8-2.0) 39 P trend=0.35 10 I.0 (ref) 67 0.98 (0.6-1.5) 27 1.5 (0.9-2.5) 17 P trend=0.29 17 P trend=0.29 10 I.0 (ref) 6 1.2 (0.5-2.8) 25 0.9 (0.4-2.2) 20 1.2 (0.5-2.8) 26 1.7 (0.7-4.1) 38 P trend=0.06 10 1.0 29 0.8 (0.5-1.4) 24	P trend =0.03 P trend= 0.28 1.0 (ref) 86 1.0 (ref) 0.94 (0.6-1.6) 19 0.5(0.2-1.0) P trend=0.78 P trend= .04 Herbicides 1.0 (ref) 37 1.0(ref) 0.97 (0.6-1.5) 35 1.0(0.6-1.6) 1.2 (0.8-2.0) 39 0.6(0.4-1.1) P trend=0.35 P trend=0.16 1.0 (ref) 67 1.0(ref) 0.98 (0.6-1.5) 27 0.7(0.4-1.2) 1.5 (0.9-2.5) 17 0.9(0.4-1.7) P trend=0.29 P trend=0.33 1.0 (ref) 6 1.0(ref) 1.0 (ref) 6 1.0(0.4-2.5) 0.9 (0.4-2.2) 20 1.4(0.6-3.4) 1.2 (0.5-2.8) 25 1.0(0.4-2.5) 0.9 (0.4-2.2) 20 1.4(0.6-3.4) 1.2 (0.5-2.8) 26 0.7(0.3-1.7) 1.7 (0.7-4.1) 38 0.7(0.3-1.7) P trend=0.06 P trend=0.08 1.0 (ref) 0.8 (0.5-1.4) 24 1.5(0.9-2.6)	P trend =0.03 P trend= 0.28 1.0 (ref) 86 1.0 (ref) 71 0.94 (0.6-1.6) 19 0.5(0.2-1.0) 9 P trend=0.78 P trend= .04 Herbicides Herbicides 1.0 (ref) 37 1.0(ref) 32 0.97 (0.6-1.5) 35 1.0(0.6-1.6) 32 1.2 (0.8-2.0) 39 0.6(0.4-1.1) 18 P trend=0.35 P trend=0.16 1.0 (ref) 67 1.0(ref) 58 0.98 (0.6-1.5) 27 0.7(0.4-1.2) 17 1.5 (0.9-2.5) 17 0.9(0.4-1.7) 9 P trend=0.29 P trend=0.33 1.0 (ref) 6 1.0(ref) 6 1.0 (ref) 6 1.0(ref) 6 1.2 (0.5-2.8) 25 1.0(0.4-2.5) 22 0.9 (0.4-2.2) 20 1.4(0.6-3.4) 33 1.2 (0.5-2.8) 26 0.7(0.3-1.	P trend =0.03 P trend= 0.28 P trend=0.38 1.0 (ref) 86 1.0 (ref) 71 1.0(ref) 0.94 (0.6-1.6) 19 0.5(0.2-1.0) 9 1.3(0.6-2.4) P trend=0.78 P trend=.04 P trend=0.49 Herbicides 1.0(ref) 32 1.0(ref) 0.97 (0.6-1.5) 35 1.0(0.6-1.6) 32 1.3(0.7-2.6) 1.2 (0.8-2.0) 39 0.6(0.4-1.1) 18 1.2(0.6-2.4) P trend=0.35 P trend=0.16 P trend=0.72 1.0 (ref) 67 1.0(ref) 58 1.0(ref) 1.0 (ref) 67 1.0(ref) 58 1.0(ref) 0.98 (0.6-1.5) 27 0.7(0.4-1.2) 17 1.3(0.7-2.5) 1.5 (0.9-2.5) 17 0.9(0.4-1.7) 9 0.6(0.2-1.8) P trend=0.29 P trend=0.33 P trend=0.71 1.0 (ref) 6 1.0(ref) 58 1.0(ref) 1.2 (0.5-2.8) 25 1.0(0.4-2.5) 22 3.2(0.5-27.0) 0.9 (0.4-2.2) 20 1.4(0.6-3.4) 33 2	P trend = 0.03 P trend= 0.28 P trend=0.38 P trend=0.38 1.0 (ref) 86 1.0 (ref) 71 1.0(ref) 35 0.94 (0.6-1.6) 19 0.5(0.2-1.0) 9 1.3(0.6-2.4) 12 P trend=0.78 P trend=.04 P trend=0.49 6 Herbicides Herbicides 1.0 (ref) 37 1.0(ref) 32 1.0(ref) 14 0.97 (0.6-1.5) 35 1.0(0.6-1.6) 32 1.3(0.7-2.6) 19 1.2 (0.8-2.0) 39 0.6(0.4-1.1) 18 1.2(0.6-2.4) 15 P trend=0.35 P trend=0.16 P trend=0.72 10 1.0 (ref) 67 1.0(ref) 58 1.0(ref) 27 0.98 (0.6-1.5) 27 0.7(0.4-1.2) 17 1.3(0.7-2.5) 16 1.5 (0.9-2.5) 17 0.9(0.4-1.7) 9 0.6(0.2-1.8) 3 P trend=0.29 P trend=0.33 P trend=0.71 10 1.0 (ref) 6 1.0(ref) 6 1.0(ref) 1 1.2 (0.5-2.8) 25 <td>P trend = 0.03 P trend= 0.28 P trend=0.38 P trend=0.67 1.0 (ref) 86 1.0 (ref) 71 1.0(ref) 35 1.0 (ref) 0.94 (0.6-1.6) 19 0.5(0.2-1.0) 9 1.3(0.6-2.4) 12 1.1 (0.5-2.8) P trend=0.78 P trend= 0.4 P trend=0.49 6 P trend=0.82 Herbicides Herbicides 1.0 (ref) 37 1.0(ref) 32 1.3(0.7-2.6) 19 1.4 (0.5-4.0) 1.2 (0.8-2.0) 39 0.6(0.4-1.1) 18 1.2(0.6-2.4) 15 3.9 (1.2-8.2) P trend=0.35 P trend=0.16 P trend=0.72 P trend=0.09 1.0 (ref) 67 1.0(ref) 58 1.0(ref) 27 1.0 1.0 (ref) 67 1.0(ref) 58 1.0(ref) 27 1.0 0.98 (0.6-1.5) 27 0.7(0.4-1.2) 17 1.3(0.7-2.5) 16 1.5 (0.7-3.4) 1.5 (0.9-2.5) 17 0.9(0.4-1.7) 9 0.6(0.2-1.8) 3 2.2 (0.9-5.7) P trend=0.29 P trend=0.33 P tr</td>	P trend = 0.03 P trend= 0.28 P trend=0.38 P trend=0.67 1.0 (ref) 86 1.0 (ref) 71 1.0(ref) 35 1.0 (ref) 0.94 (0.6-1.6) 19 0.5(0.2-1.0) 9 1.3(0.6-2.4) 12 1.1 (0.5-2.8) P trend=0.78 P trend= 0.4 P trend=0.49 6 P trend=0.82 Herbicides Herbicides 1.0 (ref) 37 1.0(ref) 32 1.3(0.7-2.6) 19 1.4 (0.5-4.0) 1.2 (0.8-2.0) 39 0.6(0.4-1.1) 18 1.2(0.6-2.4) 15 3.9 (1.2-8.2) P trend=0.35 P trend=0.16 P trend=0.72 P trend=0.09 1.0 (ref) 67 1.0(ref) 58 1.0(ref) 27 1.0 1.0 (ref) 67 1.0(ref) 58 1.0(ref) 27 1.0 0.98 (0.6-1.5) 27 0.7(0.4-1.2) 17 1.3(0.7-2.5) 16 1.5 (0.7-3.4) 1.5 (0.9-2.5) 17 0.9(0.4-1.7) 9 0.6(0.2-1.8) 3 2.2 (0.9-5.7) P trend=0.29 P trend=0.33 P tr

Comment [lbf70]: Interesting results

1.0(0.6-1.7)	27	0.8(0.4-1.5)	17	2.1(0.8-6.7)	13	2.5 (0.8-8.3)	9
1.5 (0.91-2.5)	35	1.1(0.6-2.0)	20	2.3(0.9-6.1)	13	4.2 (1.4-13.1)	13
P trend=0.07		P trend=0.64		P trend=0.30		P trend=.006	
	Fu	ngicides and Fum	igants		-		
							T
1.0 (ref)	4	1.0 (ref)	6	1.0(ref)	3	1.0	2
1.3 (0.4-3.6)	29	0.7(0.3-1.8)	28	1.1(0.3-3.6)	23	1.2 (0.3-5.6)	14
1.7 (0.6-4.6)	81	0.8(0.3-1.8)	58	0.6(0.2-2.1)	26	0.8 (0.2-3.4)	18
P trend=0.11		P trend=0.75		P trend=0.10		P trend=0.29	
			1		1		1
1.0 (ref)	43	1.0 (ref)	30	1.0(ref)	25	1.0	9
1.0 (0.6-1.9)	13	2.0(1.1-3.7)	17	0.6(0.2-1.7)	4	2.8 (1.0-7.4)	7
0.95(0.6-1.4)	58	1.1(0.7-1.8)	45	0.7(0.4-1.2)	22	1.5(0.7-3.3)	18
P trend=0.81		P trend=0.75	-	Ptrend=0.20	-	P trend=0.43	-
	1.0(0.6-1.7) 1.5 (0.91-2.5) P trend=0.07 1.0 (ref) 1.3 (0.4-3.6) 1.7 (0.6-4.6) P trend=0.11 1.0 (ref) 1.0 (ref) 0.95(0.6-1.4) P trend=0.81	1.0(0.6-1.7) 27 1.5 (0.91-2.5) 35 P trend=0.07 Function 1.0 (ref) 4 1.3 (0.4-3.6) 29 1.7 (0.6-4.6) 81 P trend=0.11 10 1.0 (ref) 43 1.0 (ref) 13 0.95(0.6-1.4) 58 P trend=0.81 10	1.0(0.6-1.7) 27 0.8(0.4-1.5) 1.5 (0.91-2.5) 35 1.1(0.6-2.0) P trend=0.07 P trend=0.64 Fungicides and Fum 1.0 (ref) 4 1.0 (ref) 1.3 (0.4-3.6) 29 0.7(0.3-1.8) 1.7 (0.6-4.6) 81 0.8(0.3-1.8) P trend=0.11 P trend=0.75 1.0 (ref) 43 1.0 (ref) 1.0 (ref) 13 2.0(1.1-3.7) 0.95(0.6-1.4) 58 1.1(0.7-1.8) P trend=0.81 P trend=0.75	1.0(0.6-1.7) 27 0.8(0.4-1.5) 17 1.5 (0.91-2.5) 35 1.1(0.6-2.0) 20 P trend=0.07 P trend=0.64 Fungicides and Fumigants 1.0 (ref) 4 1.0 (ref) 6 1.3 (0.4-3.6) 29 0.7(0.3-1.8) 28 1.7 (0.6-4.6) 81 0.8(0.3-1.8) 58 P trend=0.11 P trend=0.75 1.0 (ref) 43 1.0 (ref) 30 1.0 (ref) 43 1.0 (ref) 30 1.0 (ref) 58 1.1(0.7-1.8) 45 P trend=0.81 P trend=0.75	1.0(0.6-1.7) 27 0.8(0.4-1.5) 17 2.1(0.8-6.7) 1.5 (0.91-2.5) 35 1.1(0.6-2.0) 20 2.3(0.9-6.1) P trend=0.07 P trend=0.64 P trend=0.30 Fungicides and Fumigants 1.0 (ref) 4 1.0 (ref) 6 1.0(ref) 1.3 (0.4-3.6) 29 0.7(0.3-1.8) 28 1.1(0.3-3.6) 1.7 (0.6-4.6) 81 0.8(0.3-1.8) 58 0.6(0.2-2.1) P trend=0.11 P trend=0.75 P trend=0.10 1.0 (ref) 43 1.0 (ref) 30 1.0(ref) 1.0 (ref) 58 1.1(0.7-1.8) 45 0.7(0.4-1.2) P trend=0.81 P trend=0.75 Ptrend=0.20 Ptrend=0.20	1.0(0.6-1.7) 27 0.8(0.4-1.5) 17 2.1(0.8-6.7) 13 1.5 (0.91-2.5) 35 1.1(0.6-2.0) 20 2.3(0.9-6.1) 13 P trend=0.07 P trend=0.64 P trend=0.30 P trend=0.30 13 Fungicides and Fumigants 1.0 (ref) 4 1.0 (ref) 6 1.0(ref) 3 1.3 (0.4-3.6) 29 0.7(0.3-1.8) 28 1.1(0.3-3.6) 23 1.7 (0.6-4.6) 81 0.8(0.3-1.8) 58 0.6(0.2-2.1) 26 P trend=0.11 P trend=0.75 P trend=0.10 25 1.0 (ref) 43 1.0 (ref) 30 1.0(ref) 25 1.0 (0.6-1.9) 13 2.0(1.1-3.7) 17 0.6(0.2-1.7) 4 0.95(0.6-1.4) 58 1.1(0.7-1.8) 45 0.7(0.4-1.2) 22 P trend=0.81 P trend=0.75 Ptrend=0.20 10 10	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

¹Age adjusted (<45,45-49,50-54,55-59,60-64,65-69,≥70 ² Numbers do not sum to NHL subtype totals due to missing data ³Carbamate insecticides: carbofuran, aldicarb, carbaryl ⁴Chlorinated insecticides: aldrin, chlordane, dieldrin, DDT, heptachlor, lindane, toxaphene ⁵Organophosphate insecticides: Chlorpyrifos, coumaphos, diazinon, dichlorvos, fonofos, malathion, parathion, phorate, terbufos, ⁶Other insecticides: Glyphosate, imazethapyr, herbicide oil, paraquat, chlorimuron ethyl, dicamba, pendimethalin, trifluralin, 2,4-D, 2,4,5-T, 2,4-TP¹⁰Triazine herbicides: Atrazine, cyanazine, metribuzin ¹³Fungicides: Benomyl, chlorthalonil, captan, maneb/macozeb, metalaxyl, ziram ¹²Fungiants: methyl bromide, aluminum phosphate, ethylene dibromide, carbon tetra chloride/carbon disulfide

12/5/2016

Pesticide (chemical- functional class) [median days of lifetime exposure for each category]	NHL Cases	RR (95%) by Lifetime- Days of Exposure	NHL Cases	RR (95% CI) Intensity weighted Lifetime-Days of exposure
Benomyl (carbamate-fungicide)				
None	134	1.0 (ref)	134	1.0 (ref)
Low [0.5]	6	5.6 (2.4-12.6)	6	4.1(1.8-9.3)
Medium [12.25]	5	1.0 (0.4-2.6)	5	1.0 (0.4-2.6)
High [108.5]	5	0.8 (0.3-1.9)	5	0.8 (0.3-1.9)
		P for trend=0.50		P for trend=0.57
Captan (dicarboximide-fungicide)				
None	258	1.0 (ref)	258	1.0 (ref)
Low [4]	8	0.6 (0.3-1.3)	8	0.7 (0.4-1.5)
Medium [12.25]	8	1.6 (0.6-4.1)	7	1.2 (0.5-2.9)
High [124]	7	0.6 (0.3-1.5)	7	0.5 (0.2-1.3)
		P for trend=0.33		P for trend=0.20
Carbofuran (carbamate-insecticide)				
None	199	1.0 (ref)	199	1.0 (ref)
Low [8.75]	35	1.1 (0.8-1.6)	29	1.2 (0.8-1.8)
Medium [38.75]	25	1.0 (0.7-1.6)	29	0.9 (0.6-1.3)
High [56]	28	1.0 (0.7-1.5)	28	1.1 (0.8-1.7)

Supplemental Table 1 Other pesticide exposures (lifetime days [LD} and intensity weighted total days) and ageadjusted risk of NHL incidence (1993 through 2008).

Comment [lbf71]: I think that you need to put number of days for each pesticide. Low/Med/High is not the same for each pesticide under study and this leaves the impression that they are.

Comment [a72]: Lifetime days added as suggested.

		P trend=0.81		P trend=0.74	
Chlorpyrifos (organophosphate- insecticide)					
None	189	1.0 (ref)	189	1.0 (ref)	
Low [14.75]	44	1.1 (0.7-1.5)	40	1.1 (0.8-1.5)	
Medium [38.75]	45	1.3(0.9-1.8)	41	1.0 (0.7-1.5)	
High [116]	43	0.9 (0.7-1.3)	39	1.1 (0.8-1.5)	
		P trend=0.57		P trend=0.67	
Chlorthalonil (thalonitrile-fungicide)					
None	301	1.0 (ref)	301	1.0 (ref)	
Low [8]	7	1.3 (0.6-2.7)	7	1.1 (0.5-2.4)	
Medium [54.25]	6	0.6 (0.2-1.6)	6	0.6 (0.2-1.5)	
High [79]	6	0.6 (0.2-1.2)	6	0.7 (0.3-1.5)	
		P for trend=0.12		<u>P for trend=0.23</u>	
Coumaphos (Organophosphate- insecticide)					
None	258	1.0(ref)	258	1.0 (ref)	
Low [8.75]	12	1.2 (0.7-2.2)	10	1.6 (0.8-2.9)	
Medium [38.75]	10	1.4 (0.8-2.7)	11	1.2 (0.6-2.1)	
High [63.75]	8	1.2 (0.6-2.4)	9	1.2 (0.6-2.3)	
		P for trend=0.41		<u>P for trend=0.55</u>	
DDVP (dimethyl phosphate- insecticide)					
None	261	1.0 (ref)	261	1.0 (ref)	

.

12/5/2016

Low [8.75] 10 1.2 (0.6-2.2) 10 1.2 (0.7-2.3) Medium [108.5] 11 1.1 (0.6-2.0) 9 0.8 (0.4-1.6) High [457.25] 0.7 (0.3-1.5) 1.0 (0.5-1.9) 7 9 P for trend=0.42 P for trend=0.95 Diazinon (organophosphosphorousinsecticide) 1.0 (ref) 113 1.0 (ref) None 113 Low [8.75] 19 1.2 (0.7-2.0) 14 1.3 (0.7-2.2) Medium [30] 10 0.7 (0.3-1.7) 15 0.9 (0.5-1.7) 1.1 (0.6-1.9) High [56] 13 1.1 (0.6-2.1) 13 P trend=0.73 P trend=0.92 Fonofos (phosphonothioateinsecticide) None 220 1.0 (ref) 220 1.0 (ref) Low [20] 28 1.3 (0.9-1.9) 23 1.2 (0.8-1.9) Medium [50.75] 19 1.2 (0.8-2.0) 23 1.4 (0.93-2.2) High [108.5] 22 1.1 (0.7-1.7) 22 1.0 (0.6-1.5) P for trend=0.67 P for trend=0.98 Matalaxyl (analine methyl esterfungicide) None 126 1.0 (ref) 126 1.0 (ref) Low [3.5] 10 1.2 (0.6-2.2) 10 1.8 (0.95-3.4) 0.9 (0.5-1.7) 0.7 (0.4-1.4) Medium [24.5] 11 11 High [50] 9 0.8 (0.4-1.5) 9 0.8 (0.4-1.5)

12/5/2016

		P for trend=0.43		P for trend=028
Methyl bromide (methyl halide-fumigant)				
None	268	1.0 (ref)	268	1.0 (ref)
Low [8]	25	1.9 (1.2-2.8)	17	1.9 (1.2-3.1)
Medium [15.5]	9	0.9 (0.4-1.7)	16	1.3 (0.8-2.1)
High [28]	16	0.6 (0.3-0.9)	16	0.5 (0.3-0.9)
		P for trend=0.03		P for trend=0.02
Permethrin Animals (pyrethroid-insecticide)				
None	263	1.0 (ref)	263	1.0 (ref)
Low [8.75]	15	1.3 (0.8-2.3)	10	1.3 (0.7-2.5)
Medium [24]	5	0.8 (0.3-2.5)	10	0.8 (0.4-1.7)
High [56]	9	0.6 (0.3-1.2)	9	0.8 (0.4-1.5)
		P trend=0.18		P trend=0.43
Permethrin Crops (pyrethroid-insecticide)				
None	249	1.0 (ref)	249	1.0 (ref)
Low [8.75]]	17	1.0 (0.6-1.7)	12	1.1 (0.5-2.2)
Medium [24.5]	9	1.1 (0.5-2.3)	12	1.2 (0.7-2.2)
<u>High [59]</u>	10	0.7 (0.4-1.4)	11	0.6 (0.3-1.1)
		<u>P for trend=0.36</u>	1	P for trend=0.15
Phorate (organophosphate- insecticide)				
None	102	1.0 (ref)	102	1.0 (ref)
Low [20]	20	1. (0.6-1.6)	17	0.9(0.5-1.5)

.

Comment [lbf73]: Do you show permethrin on crops anywhere?

Medium [24.5]	20	2.2 (1.4-3.5)	17	1.9	9 (1.1-3.1)
High [56]	10	0.7 (0.4-1.3)	16	1.0	0(0.6-1.7)
		P for trend=0.80		Pt	for trend=0.67
		Herbicide exp	osures		
	Life-time	days of Exposure		Intensity	weighted days of exposure*
	NHL Cases	RR (95%)		NHL Cases	RR (95% CI)
Chlorimuron-ethyl (benzoic acid ester- herbicide)					
None	105	1.0 (ref)		105	1.0 (ref)
Low [8.75]	28	1.2(0.9-1.8)		18	1.1(0.6-1.9)
Medium [24.5]	18	1.9(1.2-3.2)		18	1.5(0.9-2.5)
High [24.5]	7	0.7(0.3-1.5)		17	1.1(0.7-1.9)
		P for trend=0.83			P for trend=0.60
Cyanazine (triazine-herbicide)					
None	162	1.0 (ref)		162	1.0 (ref)
Low [20]	58	1.4(0.9-1.9)		45	1.3(0.8-1.7)
Medium [56]	43	1.2(0.8-1.7)		45	1.4(1.0-1.9)
High [116]	35	1.1(0.8-1.6)		44	1.1(0.8-1.5)
		P for trend=0.81			P for trend=0.67
Herbicide Oil (Petroleum oils-herbicide)					
None	120	1.0 (ref)		120	1.0 (ref)
Low [20]	14	1.0(0.6-1.9)		13	1.3(0.7-2.3)
Medium [56]	13	1.8(1.0-1.1)		12	1.1(0.6-1.9)

.

High [173.25]	10	1.0(0.5-2.0)	12	1.3(0.7-2.4)
		P for trend=0.84		<u>P for trend=0.36</u>
Metolachlor (acetamide-herbicide)				
None	145	1.0 (ref)	145	1.0 (ref)
Low [20]	50	1.2(0.9-1.7)	49	1.2(0.8-1.6)
Medium [56]	54	1.3(0.94-1.5)	49	1.4(1.0-2.0)
High [116]	44	1.1(0.8-1.5)	48	1.1(0.8-1.5)
		P for trend=0.67		P for trend=0.28
Paraquat				
None	127	1.0 (ref)	127	1.0 (ref)
Low [7]	10	1.5(0.8-2.8)	10	1.9(1.0-3.7)
Medium [24.5]	10	0.8(0.4-1.5)	9	0.5(0.3-1.1)
High [116]	8	1.0(0.5-2.0)	9	1.5(0.8-3.0)
		<u>P for trend= 0.88</u>		P for trend=0.26
Pendimethalin				
None	96	1.0 (ref)	96	1.0 (ref)
Low [8.75]	32	1.1(0.7-1.6)	25	1.1(0.6-1.8)
Medium [24.5]	23	1.2(0.7-2.0)	26	1.0(0.7-1.6)
High [56]	20	1.0(0.6-1.6)	24	1.2(0.7-1.8)
	-	P for trend=0.87		<u>P for trend=0.52</u>
2,4,5 T (phenoxyacetic acid)				
None	71	1.0 (ref)	71	1.0 (ref)
Low [8.75]	30	1.7(1.1-2.5)	17	1.6(0.9-2.8)
Medium [8.75]	4	1.2(0.4-3.3)	16	1.9(1.1-3.2)
High [20]	15	1.2(0.7-2.2)	16	1.0(0.6-1.7)

•

	P for trend=0.52	P for trend=0.51
¹ Age adjusted (<45,4	5-49,50-54,55-59,60-64,65-69,≥70)	

Г

		incidence (1993 through 2008	3).	
	NHL Cases	RR (95%) by Total Days of Exposure	NHL Cases	RR (95% CI) Intensity weighted days of exposure
Benomyl				
none	134	1.0 (ref)	134	1.0 (ref)
Low	6	6.1(2.7-13.8)	6	4.6 (2.0-10.6)
medium	5	1.0(0.4-2.6)	5	1.4 (0.6-3.5)
High	5	1.0(0.4-2.6)	5	1.1 (0.4-2.8)
		P trend (full)=0.98		P trend (full)=0.94
Captan				1
none	258	1.0 (ref)	258	1.0 (ref)
Low	8	0.6(0.3-1.2)	8	0.7 (0.3-1.4)
medium	8	1.7(0.7-4.3)	7	1.2 (0.5-2.0)
High	7	0.7(0.3-1.6)	7	0.6 (0.2-1.4)
		P trend (full)=0.45		P trend (full)=0.28
Carbaryl				
none	81	1.0(ref)	81	<u>1.0 (ref)</u>
Low	31	0.96(0.6-1.6)	27	0.91 (0.6-1.5)
medium	23	0.8(0.5-1.4)	26	0.99 (0.6-1.6)
High	25	1.3(0.8-2.2)	26	1.1 (0.7-1.9)
		P trend (full)=0.26		P trend (full)=0.54
Carbofuran				1
none	199	1.0 (ref)	199	1.0 (ref)
Low	35	1.0(0.7-1.5)	29	1.1(0.8-1.6)
medium	25	0.97(0.6-1.5)	29	0.8(0.5-1.2)
High	28	0.96(0.6-1.4)	28	1.1(0.7-1.6)

.

		P trend (full)=0.83		P trend (full)=0.95
Chlorthalonil				
none	301	1.0 (ref)	301	1.0 (ref)
Low	7	1.4(0.7-3.0)	7	1.2 (0.6-2.6)
Medium	6	0.7(0.3-1.8)	6	0.6 (0.2-1.9)
High	6	0.6 (0.3-1.4)	6	0.7 (0.3-1.6)
		P trend (full)=0.21		P trend (full)=0.37
Chlorpyrifos				
None	189	1.0 (ref)	189	1.0 (ref)
Low	44	1.0(0.7-1.5)	40	1.0 (0.7-1.5)
Medium	45	1.2(0.9-1.7)	41	0.94 (0.7-1.3)
High	43	0.8(0.6-1.2)	39	1.0 (0.7-1.4)
		P trend (full)=0.31		P trend (full)=0.99
Coumaphos				
none	258	1.0 (ref)	258	1.0 (ref)
Low	12	1.1(0.6-2.0)	10	1.4 (0.8-2.7)
medium	10	1.3 (0.7-2.5)	11	1.1 (0.6-2.0)
High	8	1.1(0.5-2.2)	9	1.1 (0.6-2.1)
		P trend (full)=0.62		<u>P trend (full)=0.75</u>
Diazinon				-
None	113	1.0 (ref)	113	1.0 (ref)
Low	19	1.3(0.8-2.1)	14	1.3 (0.7-2.2)
medium	10	0.8(0.3-1.8)	15	0.9 (0.5-1.7)
High	13	1.3(0.7-2.5)	13	1.3 (0.7-2.3)
		P trend (full)=0.41		P trend (full)=0.50

DDVP				
none	261	1.0 (ref)	261	1.0 (ref)
Low	10	1.0 (0.5-1.9)	10	1.1 (0.6-2.1)
medium	11	0.92 (0.5-1.7)	9	0.7 (0.4-1.4)
High	7	0.6 (0.3-1.3)	9	0.9 (0.4-1.7)
		P trend (full)=0.22		P trend (full)=0.61
Fonofos				
None	220	1.0 (ref)	220	1.0 (ref)
Low	28	1.2(0.8-1.7)	23	1.1(0.7-1.7)
medium	19	1.1(0.7-1.7)	23	1.2(0.8-1.9)
High	22	0.9 (0.6-1.5)	22	0.9(0.5-1.3)
		P trend (full)=0.76		P trend (full)=0.51
Lindane				
None	122	1.0 (ref)	122	1.0 (ref)
Low	11	0.9(0.5-1.8)	10	1.0(0.5-1.8)
medium	10	1.0(0.5-2.0)	11	1.2(0.6-2.3)
High	10	2.3(1.2-4.5)	9	1.7(0.9-3.3)
		P trend (full)=0.01	-	P trend (full)=0.12
Malathion			-	
none	55	1.0 (ref)	55	1.0 (ref)
Low	46	0.9(0.6-1.3)	37	0.9 (0.6-1.4)
medium	28	0.7(0.4-1.1)	38	0.8 (0.5-1.1)
High	36	1.0(0.7-1.5)	35	0.9 (0.6-1.4)
		P trend (full)=0.68		P trend (full)=0.91
Metalaxyl				
none	126	1.0 (ref)	126	1.0 (ref)
Low	10	1.2(0.6-2.4)	10	1.7 (0.9-3.4)

,

medium	11	1.1(0.6-2.2)	11	0.9 (0.4-1.7)
High	9	1.1(0.5-2.3)	9	1.0 (0.5-2.2)
		P trend (full)=0.89		P trend (full)=0.93
Methyl bromide				
none	268	1.0 (ref)	268	1.0 (ref)
Low	25	2.2 (1.4-3.4)	17	2.3 (1.4-3.8)
medium	9	1.1 (0.5-2.1)	16	1.5 (0.9-2.6)
High	16	0.7 (0.4-1.2)	16	0.7 (0.4-1.1)
		P trend (full)=0.13		P trend (full)=0.07
Permethrin Animals				
None	263	1.0 (ref)	263	1.0 (ref)
Low	15	1.1(0.7-1.9)	10	1.1(0.6-2.1)
medium	5	0.7(0.2-2.1)	10	0.7(0.3-1.4)
High	9	0.5(0.3-1.0)	9	0.6(0.3-1.2)
		P trend (full)=0.055		P trend (full)=0.15
Permethrin Crops				
None	249	1.0 (ref)	249	1.0 (ref)
Low	17	0.9(0.5-1.6)	12	1.0(0.5-2.0)
medium	9	1.1(0.5-2.2)	12	1.2(0.7-2.2)
High	10	0.8(0.4-1.5)	11	0.6(0.3-1.2)
		P trend (full)=0.44		P trend (full)=0.18
Phorate				
none	102	1.0 (ref)	102	1.0 (ref)
Low	20	0.8(0.5-1.3)	17	0.7 (0.4-1.2)
medium	20	1.7(1.0-2.8)	17	1.5 (0.9-2.5)
High	10	0.6(0.3-1.0)	16	0.8 (0.5-1.4)
		P trend (full)=0.26		P trend (full)=0.70

Terbufos				
None	157	1.0 (ref)	157	1.0 (ref)
Low	58	1.3(0.9-1.8)	43	1.2(0.8-1.7)
medium	38	1.7(1.2-2.5)	43	1.7(1.2-2.4)
High	34	1.0(0.7-1.5)	42	1.1(0.8-1.6)
		P trend (full)=0.78		P trend (full)=0.65
		Herbicide exposure	es	
	Life-tim	e days of Exposure	Intensity we	ighted days of exposure*
	NHL Cases	RR (95%)	NHL Cases	RR (95% CI)
Alachlor				
None	138	1.0 (ref)	138	1.0 (ref)
Low	65	0.9 (0.7-1.2)	53	0.9(0.7-1.2)
medium	49	0.8((0.6-1.1)	50	0.8 (0.6-1.1)
High	43	1.2((0.9-1.8)	51	1.2 (0.8-1.6)
		P trend (full)=0.20		P trend (full)=0.27
Atrazine				
None	85	1.0 (ref)	85	1.0 (ref)
Low	88	1.1(0.8-1.5)	79	1.0(0.7-1.4)
medium	72	1.2 (0.8-1.6)	78	1.2(0.9-1.7)
High	77	1.0 (0.7-1.4)	78	0.98(0.7-1.4)
		<u>P trend (full)= 0.72</u>		P trend (full)=0.73
Butylate				
None	107	1.0 (ref)	107	1.0 (ref)
Low	22	0.9(0.5-1.4)	16	0.8 (0.5-1.3)
medium	18	2.4(1.4-4.0)	16	1.8 (1.0-3.0)
High	7	1.0(0.4-2.1)	15	1.3 (0.8-2.3)

		P trend (full)=0.03		P trend (full)=0.14
Chlorimuron-ethyl				
None	105	1.0 (ref)	105	1.0 (ref)
Low	28	1.1 (0.7-1.7)	18	1.0 (0.6-1.7)
medium	18	1.7 (1.0-2.9)	18	1.3(0.8-2.2)
High	7	0.7 (0.3-1.5)	17	1.1(0.6-1.8)
		P trend (full)=0.69		P trend (full)=0.68
Cyanazine				
None	162	1.0 (ref)	162	1.0 (ref)
Low	58	1.3(0.94-1.8)	45	1.2(0.8-1.7)
medium	43	1.1(0.8-1.6)	45	1.3(0.9-1.8)
High	35	1.0(0.7-1.4)	44	1.0(0.7-1.4)
		P trend (full)=0.65		<u>P trend (full)=0.76</u>
Dicamba				
None	121	1.0 (ref)	121	1.0 (ref)
Low	66	1.2 (0.8-1.7)	24	1.1(0.7-1.6)
medium	52	1.3 (0.9-1.9)	54	1.3(0.9-1.9)
High	47	1.1 (0.7-1.6)	55	1.1(0.8-1.6)
		P trend (full)=0.99		P trend (full)=0.76
2,4-D				
None	71	1.0 (ref)	71	1.0 (ref)
Low	83	0.9(0.6-1.3)	82	0.9 (0.6-1.2)
medium	83	1.0(0.7-1.4)	83	0.97 (0.7-1.4)
High	82	0.8(0.6-1.2)	81	0.9 (0.6-1.2)
		P trend (full)=0.35		P trend (full)=0.46
ЕРТС				
None	229	1.0 (ref)	229	1.0 (ref)
None	229	1.0 (ref)	229	1.0 (ref)

Low	28	1.2(0.8-1.8)	20	1.2 (0.8-2.0)
medium	14	0.9(0.7-1.9)	20	1.1 (0.7-1.7)
High	18	1.2(0.7-1.9)	19	1.0 (0.6-1.7)
		P trend (full)=0.56		P trend (full)=0.85
Glyphosate				
None	70	1.0 (ref)	70	1.0 (ref)
Low	89	0.8(0.6-1.2)	83	0.91 (0.6-1.3)
medium	78	0.8(0.6-1.2)	84	0.8 (0.5-1.1)
High	83	1.0(0.7-1.4)	82	0.97 (0.7-1.4)
		P trend (full)=0.63	_	P trend (full)=0.69
Herbicide Oil				
None	120	1.0 (ref)	120	1.0 (ref)
Low	14	1.0(0.6-1.7)	13	1.2 (0.6-2.1)
medium	13	1.7(0.93-2.9)	12	1.0 (0.5-1.8)
High	10	0.9((0.5-1.8)	12	1.2 (0.7-2.2)
		P for trend (full)=0.88		P for trend (full)=0.56
Imazethapyr				
None	181	1.0 (ref)	181	1.0 (ref)
Low	39	0.8(0.5-1.2)	36	0.8 (0.6-1.2)
medium	34	0.8(0.5-1.2)	37	0.7 (0.5-1.1)
High	35	1.0(0.7-1.5)	35	0.99 (0.7-1.5)
		<u>P trend (full)=0.90</u>		P trend (full)=0.92
Metolachlor			-	
None	145	1.0 (ref)	145	1.0 (ref)
Low	50	1.2 (0.8-1.6)	49	1.1(0.8-1.5)
medium	54	1.2 (0.8-1.7)	49	1.3(0.9-1.9)

•

12/5/2016

59

.

		P trend (full)=0.90		P trend (full)=0.81
Metribuzin				
None	94	1.0 (ref)	94	1.0 (ref)
Low	28	1.0(0.6-1.5)	21	1.0 (0.6-1.7)
medium	15	0.8(0.4-1.3)	23	0.91 (0.6-1.5)
High	20	1.4(0.8-2.3)	19	1.1 (0.7-1.9)
		P trend (full)=0.29		P trend (full)=0.66
Paraquat				
None	127	1.0 (ref)	127	1.0 (ref)
Low	10	1.6(0.8-3.0)	10	2.0 (1.0-3.7)
medium	10	0.9(0.5-1.7)	9	0.6 (0.3-1.3)
High	8	1.2(0.6-2.5)	9	1.9 (0.9-3.9)
		P trend (full)=0.72		P trend (full)=0.08
Pendimethalin				
None	96	1.0 (ref)	96	1.0 (ref)
Low	32	1.0(0.6-1.5)	25	0.9 (0.5-1.6)
medium	23	1.0(0.6-1.8)	26	0.9 (0.6-1.4)
High	20	1.0(0.6-1.5)	24	1.1 (0.7-1.8)
		P trend (full)=0.72		P trend (full)=0.60
Trifluralin				
None	140	1.0 (ref)	140	1.0 (ref)
Low	51	0.9(0.7-1.3)	50	0.9 (0.6-1.2)
medium	58	1.0(0.7-1.3)	52	1.0 (0.7-1.4)
High	43	0.8(0.6-1.2)	48	0.8 (0.6-1.1)
		P trend (full)=0.41		P trend (full)=0.30
2,4,5 T				
None	71	1.0 (ref)	71	1.0 (ref)

,

Low	30	1.6(1.0-2.4)	17	1.6 (0.9-2.6)
medium	4	1.1(0.4-3.0)	16	1.7 (1.0-2.9)
High	15	1.1(0.7-2.0)	16	1.0 (0.6-1.7)
		P trend (full)=0.78		P trend (full)=0.23

¹Age adjusted (<45,45-49,50-54,55-59,60-64,65-69,≥70), smoking status(current, former, never), number of livestock (0,<100,100-999,>999), drove diesel tractor(<weekly,≥weekly), state (NC, IA)

61

		(
	Total exp	oosure days	Intensity weig	ht exposure days
	NHL cases	RR (95% CI) ¹	NHL cases	RR (95% CI)
Aldrin				
(Chlorinated Insecticide)				
None	232	1.0 (ref)	232	1.0 (ref)
Low [8.75]	14	0.8 (0.5-1.6)	12	0.9(0.5-1.6)
Medium [56]	14	0.8(0.5-1.4)	12	0.8(0.4-1.4)
High [116]	7	1.6(0.7-3.4)	11	1.0(0.6-1.9)
		P trend=0.70		P trend=0.86
Aldrin				
None	232	1.0 (ref)	232	1.0 (ref)
Low	14	0.8 (0.5-1.4)	12	0.9 (0.5-1.6)
medium	14	1.6 (0.8-3.4)	12	1.0 (0.6-1.9)
high	7	0.9 (0.7-1.2)	11	0.9 (0.7-1.2)
		P for trend=0.42		P for trend=0.95
		P for trend (full)=0.34		P for trend (full)=0.60
Heptachlor				
(Chlorinated Insecticide)	_			
None	240	1.0 (ref)	240	1.0 (ref)
Low [8.75]	11	2.1 (1.3-3.6)	10	2.8 (1.5-5.3)
Medium [24.5]	15	0.9 (0.3-2.1)	10	1.0 (0.5-1.9)
High [24.5]	5	1.0 (0.7-1.3)	10	1.0 (0.7-1.30
		P trend=0.26		P trend=0.42

Supplemental Table 1A. Chlorinated Insecticide exposure (in total days and intensity weighted days) and NHL

12/5/2016

Heptachlor				
None	240	1.0 (ref)	240	1.0 (ref)
Low	11	0.9 (0.5-1.6)	11	0.9 (0.5-1.7)
medium	15	2.1 (1.3-3.6)	10	2.8 (1.5-5.3)
high	5	0.9 (0.4-2.1)	10	1.0 (0.5-1.9)
		P for trend=0.11		P for trend=0.41
		P for trend (full)=0.19		P for trend (full)=0.16
2,4,5 TP	-			
None	276	1.0 (ref)	276	1.0 (ref)
Low	8	1.8 (0.9-3.7)	4	1.6 (0.6-4.3)
nedium	0	0.6 (0.2-1.9)	4	1.4 (0.5-3.8)
nigh	3	0.9 (0.6-1.2)	3	0.8 (0.2-2.4)
		P for trend=0.40		P for trend=0.75
		P for trend (full)=0.27		P for trend (full)=0.74
Toxaphene				
(Chlorinated Insecticide)				
None	250	1 .0 (ref)	250	1.0 (ref)
Low [8.75]	10	3.4(1.4-8.3)	7	0.8(0.4-1.6)
Medium [20]	5	0.6(0.3-1.3)	8	0.7(0.3-1.6)
High [50.75]	6	1.0(0.7-1.3)	6	1.0(0.7-1.3)
	P trend=0.66		P trend=0.83	
Гохарhene				
None	250	1.0 (ref)	250	1.0 (ref)
Low	10	3.4 (1.4-8.3)	7	1.6 (0.8-3.5)
nedium	5	0.6 (0.3-1.3)	8	0.8 (0.4-1.6)
nigh	6	1.0 (0.7-1.3)	6	0.7 (0.3-1.6)

.

12/5/2016

P for trend=0.33	<u>P for trend=0.31</u>	
<u>P for trend (full)= 0.12</u>	P for trend (full)=0.69	

¹Age adjusted (<45,45-49,50-54,55-59,60-64,65-69,≥70)

Supplemental Tab	le 2A. Chlorinated	Insecticide exposure (in tota djusted relative risk (1993 t	l days and intens hrough 2008).	ity weighted days) and NHL fully
	Life-time	e exposure days	Intensity weig	ht exposure days
	NHL cases	RR (95% CI) ¹	NHL cases	RR (95% CI)
Aldrin				
None	232	1.0 (ref)	232	1.0 (ref)
Low	14	0.7 (0.4-1.3)	12	0.8 (0.5-1.5)
medium	14	0.7 (0.4-1.2)	12	0.7 (0.4-1.3)
high	7	1.4 (0.7)	11	0.9 (0.5-1.7)
		P for trend (full)=0.34		P for trend (full)=0.60
Chlordane				
None	223	1.0 (ref)	223	1.0 (ref)
Low	23	1.0 (0.6-1.6)	13	1.2 (0.7-2.2)
medium	6	1.8 (0.8-4.2)	13	0.9 (0.5-1.7)
high	9	0.4 (0.4-1.7)	12	1.0 (0.6-1.8)
		P for trend (full)=0.63	-	P for trend (full)=0.90
DDT		-		
None	194	1.0 (ref)	194	1.0 (ref)
Low	20	0.8 (0.5-1.3)	19	0.9 (0.6-1.5)

medium	18	1.0 (0.6-1.6)	18	0.9 (0.5-1.4)
high	17	1.5 (0.9-2.5)	18	1.4 (0.9-2.4)
		P for trend (full)=0.48		P for trend (full)=0.61
Heptachlor				
None	240	1.0 (ref)	240	1.0 (ref)
Low	11	0.8 (0.4-1.5)	11	0.8 (0.5-1.6)
medium	15	1.9 (1.1-3.3)	10	2.4 (1.3-4.7)
high	5	0.8 (0.3-1.9)	10	0.9 (0.5-1.8)
		P for trend (full)=0.19		P for trend (full)=0.16
Lindane				
None	122	1.0 (ref)	122	1.0 (ref)
Low	11	0.9 (0.5-1.8)	10	1.0(0.5-1.8)
medium	10	1.0 (0.5-2.0)	11	1.2(0.6-2.3)
high	10	2.4 (1.2-4.5)	9	1.7(0.9-3.3)
		P for trend (full)=0.01		<u>P for trend (full)=0.12</u>
Toxaphene				
None	250	1.0 (ref)	250	1.0 (ref)
Low	10	0.91 (0.5-1.7)	7	1.6 (0.7-3.3)
medium	5	3.4 (1.4-8.3)	8	0.8 (0.4-1.6)
high	6	0.6 (0.3-1.3)	6	0.7 (0.3-1.7)
		<u>P for trend (full)= 0.12</u>		P for trend (full)=0.69

.

12/5/2016

Pesticide (chemical class)	CLL, SLL, PL MCL	L,	Diffuse Large B	-cell	Follicular B-ce	11	Other B-cell ty	pes
	RR (95% CI)	n	RR (95% CI)	n	RR (95% CI)	n	RR (95% CI)	n
Alachlor (acetanilide)								
None	1.0 (ref)	53	1.0 (ref)	43	1.0 (ref)	22	1.0 (ref)	9
low	0.9(0.6-1.5)	23	0.9(0.5-1.6)	13	1.3(0.6-2.6)	10	1.6 (0.6-4.4)	7
medium	0.8(0.5-1.4)	18	0.7(0.4-1.3)	14	0.8(0.3-1.6)	9	2.1 (0.8-5.3)	10
high	1.1(0.6-2.1)	14	0.8(0.4-1.6)	10	1.1(0.4-2.7)	6	4.0 (1.2-13.0)	4
	LD P =0.67		LD P trend=0.52		LD P trend=0.9	9	LD P trend=0.0)2
	IWLD P=0.49		IWLD P trend=0.092 IWLD P trend=0.97).97	IWLD P trend= 0.20		
Atrazine (triazine)								
None	1.0 (ref)	34	1.0 (ref)	26	1.0 (ref)	12	1.0 (ref)	5
low	1.0 (0.6-1.7)	29	1.1(0.6-2.0)	21	1.7(0.7-3.9)	17	2.4 (0.9-6.8)	13
medium	1.2 (0.7-2.0)	25	1.1(0.6-2.2)	23	1.3(0.5-3.4)	10	1.7(0.5-5.9)	6
high	1.0 (0.6-1.7)	26	0.9(0.5-1.7)	19	1.4(0.6-3.4)	13	3.6 (1.2-10.8)	9
	LD P trend=0.9	0	LD P trend=0.62	_	LD P trend=0.83	5	LD P trend=0.0	6
	IWLD P trend=	0.75	IWLD P trend=0.	87	IWLD P trend=0).76	IWLD P trend=	0.22

Supplemental Table 3. Herbicide exposures (Life-time days) and age-adjusted NHL risk by cell type (1993 through 2008).

12/5/2016

Butylate (thio- carbamate-)								
None	1.0 (ref)	40	1.0 (ref)	33	1.0 (ref)	14	1.0 (ref)	8
low	0.8(0.4-1.9)	7	1.1(0.4-3.0)	4	0.8(0.2-2.9)	3	3.0 (0.8-11.3)	3
medium	3.5(1.6-7.6)	8	1.2(0.4-3.5)	4	6.3(2.1-19.3)	4	4.0(1.2-13.7)	4
high	1.3(0.4-4.3)	3	0.8(0.2-2.5)	3	1.0(0.1-7.9)	1	2.4 (0.3-19.7)	1
	LD P trend=0.04		LD P trend=0.69		LD P trend=0.0'	7	LD P trend=0.0)5
	IWLD P trend=	=0.19	IWLD P trend=0	0.89	IWLD P trend=0.12		IWLD P trend=	=0.13
Chlorimuron- ethyl (Sulfonylurea)								
None	1.0 (ref)	38	1.0 (ref)	29	1.0 (ref)	14	1.0 (ref)	14
low	1.3(0.7-2.6)	11	1.4(0.7-3.0)	9	0.9(0.3-3.1)	3	-	1
medium	2.9(1.4-6.6)	9	1.2(0.4-4.0)	3	2.8(0.9-8.7)	4	-	1
high	0.3(0.1-2.5)	1	1.4(0.5-3.9)	4	0.7(0.9-5.1)	1	-	0
	LD P for trend	=0.91	LD P trend=0.21		LD P trend=0.56		LD P for trend=xx	
	IWLD P trend=	=0.56	IWLD P trend=0	.92	IWLD P trend=0	0.62	IWLD P trend=	-
Cyanazine (triazine)								
None	1.0 (ref)	65	1.0 (ref)	46	1.0 (ref)	24	1.0 (ref)	10
low	1.2 (0.7-2.2)	15	1.4 (0.8-2.4)	16	1.9(0.9-3.8)	12	3.7(1.4-9.7)	7
medium	0.9 (0.5-1.6)	16	0.8 (0.4-1.8)	8	1.7(0.8-3.6)	9	2.9 (1.5-7.5)	8
high	1.1(0.6-2.0)	14	1.0 (0.5-2.1)	8	0.8(0.3-2.2)	4	2.6(0.9-7.5)	5
	LD P trend=0.9	93	LD P trend=0.93		LD P trend=0.87	7	LD P trend=0.1	7

.

67

	IWLD P trend=	=0.35	IWLD P trend=0	0.47	IWLD P trend=	0.68	IWLD P trend=	=0.15
2,4-D (Chlorinated Phenoxy)								
None	1.0 (ref)	25	1.0 (ref)	23	1.0 (ref)	9	1.0 (ref)	5
low	0.90(0.5-1.5)	31	0.9(0.5-1.7)	23	1.8(0.8-4.4)	14	1.9 (0.6-6.2)	10
medium	1.2(0.7-2.0)	29	1.0(0.6-1.9)	21	1.0(0.4-2.4)	14	1.7 (0.5-5.6)	9
high	1.3(0.7-2.2)	29	0.7(0.4-1.3)	21	1.4(0.6-3.4)	12	2.2 (0.7-7.2)	9
	LD P trend=0.20		LD P trend=0.23		LD P trend=0.84		LD P trend=0.3	35
	IWLD P trend=	=0.83	IWLD P trend=0	.41	IWLD P trend=	0.22	IWLD P trend=	=0.75
Dicamba (benzoic acid)				Τ				
None	1.0 (ref)	39	1.0 (ref)	40	1.0 (ref)	22	1.0 (ref)	6
low	1.5 (0.9-2.6)	23	1.1 (0.6-2.1)	12	1.5(0.7-3.4)	9	3.2 (1.0-9.9)	8
medium	1.5 (0.9-3.4)	20	1.1 (0.6-2.1)	13	1.8(0.90-4.0)	10	5.2(1.6-16.6)	7
high	2.0 (1.1-3.4)	20	0.7 (0.4-1.4)	11	0.7(0.3-1.5)	8	5.1(1.6-16.1)	7
	LD P trend=0.0	3	LD P trend=0.26		LD P trend=0.32		LD P trend=0.02	
	IWLD P trend=	0.04	IWLD P trend=0	.35	IWLD P trend=	0.22	IWLD P trend=0.02	
EPTC (thio- carbamate)								
None	1.0 (ref)	86	1.0 (ref)	62	1.0 (ref)	40	1.0 (ref)	19
low	1,2(0.6-2.3)	9	1.2(0.6-2.7)	7	-	3	2.1 (0.7-6.0)	4
medium	1.2(0.6-2.5)	8	1.7(0.7-4.2)	5	-	0	2.1 (0.6-7.1)	3
high	1.4(0.6-3.4)	5	0.8(0.3-2.3)	4	-	1	4.9 (1.4-16.7)	3
	LD P trend= 0.4	41	LD P trend=0.98		LD P trend=0.10)	LD P trend=0.0)1
	IWLD P trend=	0.43	IWLD P trend=0	.59	IWLD P trend=0	0.14	IWLD P trend=	0.15

Glyphosate (isopropyl- amine)								
None	1.0 (ref)	25	1.0 (ref)	19	1.0 (ref)	13	1.0 (ref)	10
low	0.6(0.4-1.1)	32	1.3(0.7-2.6)	23	0.7(0.3-1.7)	15	0.4 (0.1-1.2)	9
medium	1.1(0.6-1.9)	29	1.1(0.5-2.1)	23	0.6(0.2-1.4)	11	0.6 (0.2-1.6)	7
high	1.1(0.6-1.8)	29	0.7(0.4-1.3)	22	0.7(0.3-1.8)	12	0.6 (0.2-1.8)	7
	LD P trend=0.2	21	LD P trend=0.05	-	LD P trend=0.6	6	LD P trend=0.9	8
	IWLD P trend=	=0.18	IWLD P trend=0.1	9	IWLD P trend=	0.83	IWLD P trend=	0.75
Herbicide Oil (petroleum oil)								
None	1.0 (ref)	42	1.0 (ref)	35	1.0 (ref)	17	1.0 (ref)	14
low	1.8(0.8-4.3)	7	1.0(0.4-2.5)	6	1.4(0.3-5.9)	2	-	1
medium	2.6(1.0-6.7)	5	2.8(0.7-11.9)	2	1.1(0.1-8.4)	1	-	1
high	1.0(0.4-2.6)	5	1.4(0.4-4.5)	3	0.5(0.1-3.6)	1	0	0
	LD P trend=0.76		LD P trend=0.55		LD P trend=0.46		LD P trend=xxx	
	IWLD P trend=	=0.88	IWLD P trend=0.1	6	IWLD P trend=0.40		IWLD P trend=xxx	
Imazethapyr (imid- azolinone)								
None	1.0 (ref)	68	1.0 (ref)	57	1.0 (ref)	29	1.0 (ref)	12
low	1.0(0.6-1.8)	16	0.7(0.3-1.4)	10	0.7(0.3-1.7)	6	1.6 (0.6-3.8)	8
medium	0.8(0.4-1.6)	11	0.6(0.3-1.4)	6	1.1(0.3-3.5)	6	5.2 (1.6-16.6)	4
high	1.2(0.6-2.2)	12	0.5(0.2-1.2)	3	1.0(0.4-2.8)	5	3.2 (1.0-10.0)	4
	LD P trend=0.7	71	Ld P trend=0.16		LD P trend=0.9	0	LD P trend=0.0	3
	IWLD P trend=	=0.95	IWLD P trend=0.3	4	IWLD P trend=	0.83	IWLD P trend=	0.03

.

69

Metolachlor (chlor- acetanilide)								
None	1.0 (ref)	52	1.0 (ref)	48	1.0 (ref)	20	1.0 (ref)	10
low	1.2(0.7-2.0)	23	0.9(0.4-2.1)	11	1.4(0.6-3.2)	9	2.7 (1.0-7.0)	9
medium	1.7(0.95-3.2)	17	1.3(0.7-2.4)	12	1.4(0.6-3.7)	9	2.1 (0.6-7.7)	4
high	1.3(0.8-2.3)	18	0.4(0.2-0.9)	9	1.5(0.7-3.6)	8	2.6 (0.9-7.2)	6
	LD P trend=0.19		LD P trend=0.07		LD P trend=0.43	3	LD P trend=0.1	19
	IWLD P trend=0.20		IWLD P trend=0.23		IWLD P trend=0.33		IWLD P trend=0.64	
Metribuzin (Triazinone)								
None	1.0 (ref)	30	1.0 (ref)	35	1.0 (ref)	13	1.0 (ref)	9
low	1.5(0.7-2.9)	11	0.5(0.2-1.4)	5	1.4(0.5-3.9)	5	1.0 (0.2-4.9)	3
medium	2.1(1.1-4.0)	13	0.5(0.1-2.0)	3	0.8(0.2-2.9)	3	2.8 (0.9-8.9)	5
high	1.8(0.6-5.2)	4	0.4(0.1-1.6)	2	1.3(0.2-9.8)	1	-	0
	LD P trend=0.06		LD P trend=0.13		LD P trend=0.88		LD P trend=0.60	
	IWLD P trend=	=0.03	IWLD P trend=0.21		IWLD P trend=0.10		IWLD P trend=0.43	
Paraquat (bi- pyridylium)								
None	1.0 (ref)	48	1.0 (ref)	37	1.0 (ref)	15	1.0 (ref)	14
low	1.0(0.4-2.4)	5	2.4(0.9-6.7)	4	2.9(0.7-12.7)	2	-	1
medium	1.0(0.2-4.0)	2	0.7-0.2-2.3)	3	1.2(0.3-5.3)	2	-	1
high	1.0(0.3-3.2)	3	0.8(0.2-3.4)	2	1.0(0.1-7.6)	1	-	0
	Ld P trend=0.9	19	LD P trend=0.23	-	LD P trend=0.94	ļ	LD P trend=xx	x
	IWLD P trend=	=0.44	IWLD P trend=0.7	8	IWLD P trend=0).75	IWLD P trend=	XXX

Pendi- methalin								
(dinitro- aniline)								
None	1.0 (ref)	38	1.0 (ref)	28	1.0 (ref)	11	1.0 (ref)	8
low	1.2(0.6-2.2)	12	1.0(0.4-2.2)	9	1.4(0.5-4.2)	6	1.8 (0.5-6.2)	5
medium	1.2(0.6-2.7)	8	0.92(0.3-2.6)	6	1.5(0.4-5.4)	4	2.3 (0.6-8.9)	4
<u>high</u>	0.8(0.3-1.9)	6	0.8(0.3-2.1)	5	1.4(0.5-4.5)	4	1.8 (0.5-6.9)	3
	LD P trend=0.66		LD P trend=0.66		LD P trend=0.57		LD P trend=0.42	
	IWLD P trend=0.44		IWLD P trend= 0.88		IWLD P trend=0.49		IWLD P trend=0.70	
Trifluralin (dinitro-								
News	1.0 (m)	15	1.0 (100)	12	10(200	25	1.0 (mat)	10
None	1.0 (rer)	45	1.0 (fef)	43	1.0 (fef)	25	1.0 (rer)	10
low	1.1(0.7-1.9)	23	0.9(0.5-1.7)	14	0.9(0.4-1.9)	8	1.2 (0.4-3.2)	7
medium	1.6(0.9-2.6)	21	0.8(0.4-1.7)	11	0.8(0.4-1.8)	8	2.7 (1.0-7.0)	7
high	1.1(0.6-1.9)	15	0.6(0.3-1.2)	11	0.8(0.3-1.9)	7	3.3 (1.2-9.1)	6
	LD P trend= 0.08		LD P trend=0.13		LD P trend=0.62		LD P trend=0.01	
	IWLD P trend=0.80		IWLD P trend=0.11		IWLD P trend=0.65		IWLD P trend=0.08	
2,4,5 T								
None	1.0 (ref)	37	1.0 (ref)	33	1.0 (ref)	14	1.0 (ref)	12
low	2.1(1.1-3.9)	14	1.3(0.6-3.0)	7	4.6(1.3-16.1)	3	-	3
medium	2.4(0.7-7.00	3	0.9(0.2-3.7)	2	2.1(0.6-7.2)	3	-	0
high	1.1(0.4-2.8)	5	1.3(0.4-4.3)	3	1.1(0.2-4.8)	2	-	1
	LD P trend= 0.33		LD P trend=0.71		LD P trend=0.7	3	LD P trend=xxx	
	IWLD P trend=0.83		IWLD P trend=0.90		IWLD P trend=	0.80	IWLD P trend=0.97	

¹Age adjusted (<45,45-49,50-54,55-59,60-64,65-69,≥70)

² Numbers do not sum to NHL subtype totals due to missing data

12/5/2016

	CLL, SLL, P MCL	LL,	Diffuse Larg	Foll	Follicular B-cell			Other B-cell types		
	RR (95% CI)	n	RR (95% CI) n	RR	(95% (CI)	n	RR (95% CI)	n
Aldicarb			1		-		-			+
None	1.0 (ref)	51	1.0 (ref)	40	1.0 (ref)		19	1.0 (ref)	15
low	1.9(0.3-13.4)	1	1.7(0.4-7.2)	2	6.1(6.1(0.8-45.7)		1	-	1
medium	0.95(0.1-6.9))	1	4.8(1.2-19.8)	2	1.2(0.2-9.4))	2	-	1
high	-	0	0.5(0.1-4.1)	1	-			0	-	0
	LD P trend=0.15		LD P trend=0.72		LDI	LD P trend=0.63			LD P trend=xxx	
	IWLD P trend=0.14		IWLD P trend	IWL	IWLD P trend=0.64			IWLD P trend=xxx		
Carbaryl				1	-		[T
None	1.0 (ref)	32	1.0 (ref)	23	1.0 (ref)	9		1.0 (ref)	9
low	1.1(0.5-2.2)	15	0.7(0.3-1.5)	10	1.1(0).3-	5		xxx-	6
medium	1.0(0.2-4.2)	2	1.3(0.6-3.0)	8	1.8(0	0.6-	4		xxx-	0
high	0.4(0.2-0.8)	8	1.5(0.7-3.5)	8	1.3(0 4.1)).4-	4		xxx-	1
	LD P trend=0.007		LD P trend=0.19		LDI	LD P trend=0.66			LD P trend=xxx	
	IWLD P trend=0.02		IWLD P trend=0.27		IWL	IWLD P trend=0.81		IWLD P trend=xxx		
Carbofuran		-			-	-				Τ
None	1.0 (ref)	67	1.0 (ref)	58	1.0 (ref)	33		1.0 (ref)	19
low	1.4(0.8-2.5)	15	0.9(0.4-1.9)	8	0.96	(0.4-	5		1.0 (0.4-2.7)	5

Supplemental Table 4. Insecticides, fungicide and fumigant exposure (life-time days) and ageadjusted risk of NHL by cell type (1993 through 2008).

Comment [lbf74]: It looks like in the main tables you have restricted presenting results when there aren't 5 cases in a cell. You should use the same rules in the supplemental tables.

72
medium	1.2(0.6-2.4)	10	0.9(0.4-1.8)	9	1.6(0.7- 3.9)	6	1.4(0.2-10.7)	1
<u>high</u>	1.3(0.7-2.4)	12	1.1(0.5-2.9)	5	0.6(0.2- 2.0)	3	0.94(0.2-4.1)	2
	LD P trend=0	.36	LD P trend=0	0.81	LD P tren	d=0.79	LD P trend=0.	99
	IWLD P trend	I=0.79	IWLD P trend	d=0.71	IWLD P tr	rend=0.72	IWLD P trend	=XXX
Chlorpyrifos		1		1		1		
None	1.0 (ref)	69	1.0 (ref)	55	1.0 (ref)	26	1.0 (ref)	18
low	0.9(0.5-1.7)	15	1.2(0.6-2.1)	13	1.4(0.7- 3.1)	10	0.9(0.3-2.6)	5
medium	1.1(0.7-2.0)	16	1.0(0.5-1.7)	15	1.2(0.5- 2.9)	7	4.2(1.7-10.6)	6
<u>high</u>	1.0(0.5-1.7)	14	0.9(0.6-4.0)	7	1.4(0.6- 3.4)	6	0.8(0.3-2.3)	4
	LD P trend=0.	.99	LD P trend=0	.66	LD P trend	d=0.56	LD P trend=0.	97
	IWLD P trend	=0.88	IWLD P trend	l=0.67	IWLD P ti	rend=0.22	IWLD P trend	
Chlorthalonil								
None	1.0 (ref)	107	1.0 (ref)	84	1.0 (ref)	45	1.0 (ref)	32
low	0.9(0.3-2.9)	3	1.6(0.4-6.6)	2	3.1(0.7- 12.6)	2	-	1
medium	0.7(0.2-2.7)	2	1.4(0.3-5.6)	2	1.2(0.3- 4.8)	2	-	0
high	0.7(0.2-2.7)	2	0.2(0.1-1.4)	1	0.6(0.1- 4.4)	1	-	0
	LD P trend=0.	46	LD P trend=0	.11	LD P trend	d=0.61	LD P trend=xx	x
	IWLD P trend	=0.96	IWLD P trend	l=0.17	IWLD P tr	rend=0.41	IWLD P trend	=xxx
Coumaphos								
None	1.0 (ref)	92	1.0 (ref)	72	1.0 (ref)	42	1.0 (ref)	22
low	1.1(0.4-3.1)	4	0.7(0.2-2.3)	3	1.9(0.6- 6.0)	3	xxx-	4
medium	2.0(0.8-4.9)	5	2.1(0.5-8.5)	2	0.5(0.1-4.0)	1	xxx-	0
		1	73	1			12/5/2010	5

.

.

<u>high</u>	1.3(0.4-4.0)	3	1.5(0.4-5.9)	2	2.2(0.3- 16.3)	1	-	1
	LD P trend=0	.36	LD P trend=0.	.47	LD P trend	d=0.43	LD P trend=x:	xx
	IWLD P trend	l=0.53	IWLD P trend	l=0.74	IWLD P tr	rend=0.82	IWLD P trend	= _{XXX}
Diazinon								Γ
None	1.0 (ref)	40	1.0 (ref)	33	1.0 (ref)	13	1.0 (ref)	12
low	1.5(0.7-3.1)	9	1.2(0.4-3.1)	5	1.6(0.4- 5.5)	3	xxx-	2
medium	1.2(0.4-3.6)	5	0.9(0.3-2.8)	4	1.6(0.4- 7.4)	3	XXX-	1
high	1.2(0.5-3.0)	5	1.2(0.4-3.8)	3	2.0(0.4- 10.0)	2	XXX-	0
	LD P trend=0	.72	LD P trend=0.	.84	LD P trend=0.35		LD P trend=xxx	
	IWLD P trend	l=0.60	IWLD P trend	=0.84	IWLD P tr	end=0.53	IWLD P trend	= _{XXX}
DDVP								
None	1.0 (ref)	95	1.0 (ref)	74	1.0 (ref)	43	1.0 (ref)	24
low	1.3(0.5-3.5)	4	4.1(1.0-16.9)	2	0.7(0.2-3.1)	2	XXX-	1
medium	1.4(0.6-3.4)	5	0.5(0.1-1.9)	2	2.2(0.3- 16.1)	1	XXX-	2
high	0.3(0.1-2.1)	3	0.3(0.1-2.2)	1	0.5(0.1-3.9)	1	-XXX	0
	LD P trend=0.	46	LD P trend=0.	25	LD P trend=0.54		LD P trend=xxx	
	IWLD P trend	=0.85	IWLD P trend	=0.54	IWLD P trend=0.53		IWLD P trend=xxx	
Fonofos								1
None	1.0 (ref)	79	1.0 (ref)	61	1.0 (ref)	40	1.0 (ref)	17
low	1.6(.8-2.9)	12	1.5(0.8-3.1)	9	-	5	2.2(0.8-5.9)	5
medium	1.2(0.5-2.9)	5	1.0(0.4-2.3)	6	-	0	2.0(0.6-6.7)	3
high	0.9(0.5-2.0)	8	1.3(0.5-3.2)	5	-	2	2.3(0.3-17.0)	1
	LD P trend=0.	88	LD P trend=0.	62	LD P trend	l=0.20	LD P trend=0.19	
			74				12/5/201	6

IWLD P trend	1-0.94	I WLD P trend	1-0.77	IWLDPU	end-0.18	I WLD P tre	nu-xxx
1.0 (ref)	41	1.0 (ref)	39	1.0 (ref)	14	1.0 (ref)	14
1.6(0.7-3.6)	8	0.7(0.2-3.0)	9	2.7(0.8- 9.4)	3	xxx-	1
1.1(0.3-4.8)	3	1.1(0.3-3.7)	6	3.6(0.8- 15.9)	2	XXX-	0
3.8(1.5-9.6)	5	1.3(0.2-9.7)	5	2.4(0.5- 10.4)	2	XXX-	0
LD P trend=0.	.005	LD P trend=0	.25	LD P trend	d=0.25	LD P trend=	XXX
IWLD P trend	=0.04	IWLD P trend	1=0.29	IWLD P ti	end=0.18	IWLD P tre	nd=xxx
1.0 (ref)	21	1.0 (ref)	16	1.0 (ref)	5	1.0 (ref)	6
0.94(0.5-1.8)	17	0.8(0.4-1.7)	16	1.0(0.3- 3.6)	6	-xxx	8
0.8(0.4-1.7)	11	0.9(0.4-2.1)	8	1.2(0.3- 4.3)	5	-xxx	0
0.8(0.4-1.7)	11	1.7(0.8-3.8)	11	1.5(0.4- 4.9)	5	-xxx	3
LD P trend=0.	52	LD P trend=0.	.07	LD P trend	1=0.48	LD P trend=	XXX
IWLD P trend	=0.24	IWLD P trend	l=0.33	IWLD P tr	end=0.56	IWLD P tree	nd=xxx
1.0 (ref)	52	1.0 (ref)	37	1.0 (ref)	19	1.0 (ref)	16
2.9(0.9-9.4)	3	2.6(0.6-10.9)	2	2.6(0.4- 19.8)	1	-xxx	0
1.6(0.4-6.6)	2	1.3(0.4-4.2)	3	1.1(0.1- 8.0)	1	-xxx	0
0.3(0.1- 2.4)	1	3.5(0.5- 25.4)	1	-	0	-xxx	0
LDP trend=0.	43	LD P trend=0.	.19	LD P trend	1=0.55	LD P trend=	XXX
	0.40	IW/I D D trand	-0.17	IWIDPH	end=0.66	IWI D P tree	nd=vvv
	1.0 (ref) 1.0 (ref) 1.6(0.7-3.6) 1.1(0.3-4.8) 3.8(1.5-9.6) LD P trend=0. IWLD P trend=0. 1.0 (ref) 0.94(0.5-1.8) 0.8(0.4-1.7) 0.8(0.4-1.7) LD P trend=0. IWLD P trend=0. 1.0 (ref) 2.9(0.9-9.4) 1.6(0.4-6.6) 0.3(0.1- 2.4) LD P trend=0.	IwllD P trend=0.94 1.0 (ref) 41 1.6(0.7-3.6) 8 1.1(0.3-4.8) 3 3.8(1.5-9.6) 5 LD P trend=0.005 IWLD P trend=0.04 1.0 (ref) 21 0.94(0.5-1.8) 17 0.8(0.4-1.7) 11 0.8(0.4-1.7) 11 LD P trend=0.52 IWLD P trend=0.24 I.0 (ref) 52 2.9(0.9-9.4) 3 1.6(0.4-6.6) 2 0.3(0.1- 1 2.4) LD P trend=0.43	IwLD P trend=0.94 IwLD P trend 1.0 (ref) 41 1.0 (ref) 1.6(0.7-3.6) 8 0.7(0.2-3.0) 1.1(0.3-4.8) 3 1.1(0.3-3.7) 3.8(1.5-9.6) 5 1.3(0.2-9.7) LD P trend=0.005 LD P trend=0 IWLD P trend=0.04 IWLD P trend=0 IWLD P trend=0.04 IWLD P trend=0 0.94(0.5-1.8) 17 0.8(0.4-1.7) 0.8(0.4-1.7) 11 0.9(0.4-2.1) 0.8(0.4-1.7) 11 0.9(0.4-2.1) 0.8(0.4-1.7) 11 1.7(0.8-3.8) LD P trend=0.52 LD P trend=0 ID P trend=0.52 LD P trend=0 IWLD P trend=0.24 IWLD P trend=0 1.0 (ref) 52 1.0 (ref) 2.9(0.9-9.4) 3 2.6(0.6-10.9) 1.6(0.4-6.6) 2 1.3(0.4-4.2) 0.3(0.1- 1 3.5(0.5- 2.4) LD P trend=0.43 LD P trend=0	IwLD P trend=0.94 IwLD P trend=0.77 1.0 (ref) 41 1.0 (ref) 39 1.6(0.7-3.6) 8 0.7(0.2-3.0) 9 1.1(0.3-4.8) 3 1.1(0.3-3.7) 6 3.8(1.5-9.6) 5 1.3(0.2-9.7) 5 ID P trend=0.005 LD P trend=0.25 IWLD P trend=0.04 IWLD P trend=0.29 1.0 (ref) 21 1.0 (ref) 16 0.94(0.5-1.8) 17 0.8(0.4-1.7) 16 0.8(0.4-1.7) 11 0.9(0.4-2.1) 8 0.8(0.4-1.7) 11 1.7(0.8-3.8) 11 LD P trend=0.52 LD P trend=0.07 1WLD P trend=0.33 11 LD P trend=0.24 IWLD P trend=0.33 11 1.0 (ref) 37 2.9(0.9-9.4) 3 2.6(0.6-10.9) 2 1.6(0.4-6.6) 2 1.3(0.4-4.2) 3 1.6(0.4-6.6) 2 1.3(0.4-4.2) 3 2.6(0.5- 1 LD P trend=0.43 LD P trend=0.19 10 10 10 10	IwLD P trend=0.94 IwLD P trend=0.77 IwLD P trend=0.77 1.0 (ref) 41 1.0 (ref) 39 1.0 (ref) 1.6(0.7-3.6) 8 0.7(0.2-3.0) 9 2.7(0.8-9.4) 1.1(0.3-4.8) 3 1.1(0.3-3.7) 6 3.6(0.8-15.9) 3.8(1.5-9.6) 5 1.3(0.2-9.7) 5 2.4(0.5-10.4) ILD P trend=0.005 LD P trend=0.25 LD P trend IWLD P trend=0.04 IWLD P trend=0.29 IWLD P trend 1.0 (ref) 21 1.0 (ref) 16 1.0 (ref) 0.94(0.5-1.8) 17 0.8(0.4-1.7) 16 1.0(0.3-3.6) 0.8(0.4-1.7) 11 0.9(0.4-2.1) 8 1.2(0.3-4.4.3) 0.8(0.4-1.7) 11 0.9(0.4-2.1) 8 1.2(0.3-4.4.3) 0.8(0.4-1.7) 11 0.9(0.4-2.1) 8 1.2(0.3-4.4.3) 0.8(0.4-1.7) 11 0.9(0.4-2.1) 8 1.2(0.3-4.4.3) 0.8(0.4-1.7) 11 1.7(0.8-3.8) 11 1.5(0.4-4.9) ILD P trend=0.52 LD P trend=0.07 LD P trend 1.0 1.0 (ref) 52	IWLD P trend=0.94 IWLD P trend=0.17 IWLD P trend=0.18 1.0 (ref) 41 1.0 (ref) 39 1.0 (ref) 14 1.6(0.7-3.6) 8 0.7(0.2-3.0) 9 2.7(0.8- 9.4) 3 1.1(0.3-4.8) 3 1.1(0.3-3.7) 6 3.6(0.8- 15.9) 2 3.8(1.5-9.6) 5 1.3(0.2-9.7) 5 2.4(0.5- 10.4) 2 IWLD P trend=0.005 LD P trend=0.25 LD P trend=0.25 ID P trend=0.18 IWLD P trend=0.04 IWLD P trend=0.29 IWLD P trend=0.18 1.0 (ref) 21 1.0 (ref) 16 1.0 (ref) 5 0.94(0.5-1.8) 17 0.8(0.4-1.7) 16 1.0(0.3- 3.6) 6 0.8(0.4-1.7) 11 0.9(0.4-2.1) 8 1.2(0.3- 4.3) 5 0.8(0.4-1.7) 11 1.7(0.8-3.8) 11 1.5(0.4- 4.9) 5 ID P trend=0.52 LD P trend=0.07 LD P trend=0.48 IWLD P trend=0.48 IWLD P trend=0.24 IWLD P trend=0.33 IWLD P trend=0.56 1.0 (ref) 52 1.0 (ref) 37 1.0 (ref) 19	IWLD P trend=0.94 IWLD P trend=0.77 IWLD P trend=0.18 IWLD P trend=0.18 1.0 (ref) 41 1.0 (ref) 39 1.0 (ref) 14 1.0 (ref) 1.6(0.7-3.6) 8 0.7(0.2-3.0) 9 2.7(0.8- 9.4) 3 xxx- 1.1(0.3-4.8) 3 1.1(0.3-3.7) 6 3.6(0.8- 15.9) 2 xxx- 3.8(1.5-9.6) 5 1.3(0.2-9.7) 5 2.4(0.5- 10.4) 2 xxx- IWLD P trend=0.005 LD P trend=0.25 LD P trend=0.18 IWLD P trend=0.18 IWLD P trend=0.18 IWLD P trend=0.04 IWLD P trend=0.29 IWLD P trend=0.18 IWLD P trend=0.18 IWLD P trend=0.18 1.0 (ref) 21 1.0 (ref) 16 1.0 (ref) 5 1.0 (ref) 0.94(0.5-1.8) 17 0.8(0.4-1.7) 16 1.0(0.3- 3.6) 6 -xxx 0.8(0.4-1.7) 11 0.9(0.4-2.1) 8 1.2(0.3- 4.3) 5 -xxx 0.8(0.4-1.7) 11 1.7(0.8-3.8) 11 1.5(0.4- 4.9) 5 -xxx 1.D P trend=0.52 LD P trend=0.07 LD P trend=0.56 IW

.

Metalaxyl								
None	1.0 (ref)	46	1.0 (ref)	34	1.0 (ref)	18	1.0 (ref)	
Low	3.9(1.7-9.3)	6	1.1(0.3-3.6)	4	0.8(0.2- 3.4)	2	-xxx	
medium	1.3(0.3-5.4)	2	1.4(0.5-3.9)	5	2.1(0.5- 9.2)	2	-xxx	
high	0.4(0.1-1.2)	3	0.9(0.2-4.0)	2	0.9(0.1- 6.4)	1	-xxx	
	LD P trend=0	.08	LD P trend=0	.92	LD P trend	1=0.81	LD P trend=	=XXX
	IWLD P trend	l=0.04	IWLD P trend	l=0.85	IWLD P tr	rend=0.83	IWLD P tre	nd=xxx
Methylbromide								
None	1.0 (ref)	101	1.0 (ref)	65	1.0 (ref)	45	1.0 (ref)	14
low	0.8(0.3-2.1)	4	4.8(2.5-9.3)	10	1.4(0.3- 5.8)	2	-xxx	1
medium	0.7(0.3-1.6)	5	1.3(0.6-3.1)	6	1.2(0.4- 4.0)	3	-XXX	1
high	0.4(0.1-1.3)	3	1.2(0.5-2.6)	7	-	0	-xxx	0
	LD P trend=0.09		LD P trend=0.71		LD P trend	1=0.08	LD P trend=	XXX
	IWLD P trend	=0.02	IWLD P trend	l=0.57	IWLD P tr	end=0.09	IWLD P tree	nd=xxx
Permethrin animals								
None	1.0 (ref)	95	1.0 (ref)	78	1.0 (ref)	38	1.0 (ref)	25
low	1.3(0.5-3.3)	5	0.2(0.1-1.3)	1	2.8(1.1- 7.0)	5	-xxx	1
medium	0.9(0.2-3.7)	3	0.5(0.1-3.4)	1	2.9(0.7- 12.0)	2	-XXX	2
high	0.8(0.3-2.5)	3	-	0	0.8(0.2- 3.5)	2	-XXX	0
	LD P trend=0.	.75	LD P trend=0	.19	LD P trend	l=0.93	LD P trend=	0.87
	IWLD P trend	=0.70	IWLD P trend	1=0.29	IWLD P tr	end=0.73	IWLD P tree	nd=xxx
Permethrin								

•

.

None	1.0 (ref)	86	1.0 (ref)	72	1.0 (ref)	39	1.0 (ref)	23
low	1.9(0.6-5.4)	6	0.6(0.1-2.2)	3	1.1(0.3- 3.5)	3	-xxx	4
medium	0.8(0.4-1.9)	6	2.7(0.7-10.6)	2	1.5(0.4- 6.4)	2	-xxx	0
high	1.2(0.4-4.0)	4	0.4(0.1-1.8)	2	0.5(0.1- 3.9)	2	-XXX	0
	LD P trend=0.	76	LD P trend=0.	28	LD P trend	i=0.57	LD P trend=0.	37
	IWLD P trend	=0.70	IWLD P trend	=0.33	IWLD P tr	end=0.45	IWLD P trends	=XXX
Phorate		1						
None	1.0 (ref)	36	1.0 (ref)	29	1.0 (ref)	15	1.0 (ref)	10
low	1.4(0.7-3.0)	9	1.0(0.4-2.6)	5	0.6(0.1-2.7)	2	1.4 (0.4-4.6)	4
medium	1.4(0.6-3.2)	6	2.0(0.9-4.7)	7	2.9(0.96- 8.7)	4	1.5 (0.2-11.6)	1
high	0.94(0.4-2.4)	5	0.7(0.2-2.4)	3	-	0	1.4 (0.2-11.2)	1
	LD P trend=0.	90	LD P trend=0.	92	LD P trend	i=0.82	LD P trend=X	xx
	IWLD P trend	=0.53	IWLD P trend	=0.98	IWLD P tr	end=0.33	IWLD P trend	=XXX
Terbufos								
None	1.0 (ref)	53	1.0 (ref)	47	1.0 (ref)	26	1.0 (ref)	10
low	1.8(1.0-3.1)	17	0.9(0.4-1.7)	12	2.5(1.1- 5.4)	8	2.3 (0.8-6.6)	6
medium	2.2(1.3-3.6)	21	2.2(1.2-4.2)	12	1.8(0.7- 4.3)	7	3.1(1.1-9.2)	5
high	1.4(0.8-2.6)	13	1.1(0.5-2.3)	10	0.7(0.3- 1.8)	6	4.1(1.4-11.9)	5
	LD P trend=0.	16	LD P trend=0.	34	LD P trend	l=0.54	LD P trend=0.0	01
	IWLD P trend=	=0.14	IWLD P trend	=0.40	IWLD P tr	end=0.18	IWLD P trend	=xxx

¹Age adjusted ($<45,45-49,50-54,55-59,60-64,65-69,\geq 70$)

77

Supplemental Table 5. Estimated individu NHL	al and joint effects of	f pesticide combinations and age-adjusted risk of
Individual and joint pesticide exposures	Exposed cases	Poisson Regression RR (95% CI) ¹
Chlordane and DDT		
Neither	174	1.0 (reference)
Chlordane only	19	0.6 (0.4-1.0)
DDT only	49	0.8(0.6-1.2)
Both	56	0.9 (0.7-1.3)
Chlordane and Lindane		
Neither	200	1.0 (reference)
Chlordane only	47	0.8(0.6-1.2)
Lindane only	23	1.0(0.6-1.5)
both	28	1.0(0.7-1.6)
Lindane and dicamba		
Neither	113	1.0 (reference)
Lindane only	15	1.0 (0.6-1.7)
dicamba only	120	1.3 (0.98-1.6)
both	32	1.2 (0.8-1.8)
Atrazine and Chlordane		
Neither	58	1.0 (reference)
atrazine only	162	1.3(0.97-1.8)
Chlordane only	19	1.0(0.6-1.7)
Both	57	1.1(0.8-1.6)
2.4.5.4 and Lindows		
2,4,5 t and Lindane	100	
Neither	190	1.0 (reference)
2,4,5-t only	57	1.1(0.9-1.6)

Comment [a75]: Need to delete. No really interesting findings, no space. Timing of pesticides not possible.

78 12/5/2016

Lindane only	27	1.1(0.7-1.6)	
Both	25	1.2 (0.8-1.8)	
Atrazine and Lindane			
Neither	73	1.0 (reference)	
Atrazine only	173	1.1 (0.9-1.5)	
Lindane only	4	0.5 (0.2-1.3)	
both	47	1.3 (0.9-1.9)	
Atrazine and Dicamba			
Neither	61	1.0 (reference)	
Atrazine only	72	1.0 (0.7-1.4)	
Dicamba only	17	1.0 (0.6-1.7)	
both	140	1.3 (0.97-1.8)	
Atrazine and Carbofuran			
Neither	68	1.0 (reference)	
Atrazine only	132	1.1 (0.9-1.5)	
Carbofuran only	9	0.9 (0.4-1.8)	
Both	81	1.2 (0.9-1.6)	
Atrazine and Diazinon			
Neither	58	1.0 (reference)	
atrazine only	163	1.2 (0.9-1.7)	
Diazinon only	20	0.9 (0.5-1.5)	
Both	59	1.1 (0.8-1.6)	
Atrazine and alachlor			
Neither	65	1.0 (reference)	
atrazine only	73	1.1 (0.8-1.5)	

alachlor only	16	0.8 (0.5-1.4)	
Both	146	1.1 (0.8-1.5)	
2.4.5 t and dicamba			
	04	10 (25 (20 - 20 - 20 - 20 - 20 - 20 - 20 - 20	
Neither	94	1.0 (reference)	
2,4,5-t only	32	1.3 (0.9-1.9)	
dicamba only	107	1.4 (1.0-1.8)	
Both	45	1.3 (0.9-1.8)	
2,4-D and Chlordane			
Neither	55	1.0 (reference)	
2,4-D only	164	1.1(0.8-1.5)	
Chlordane only	7	0.7(0.3-1.5)	
Both	70	1.0 (0.7-1.5)	
Glyphosate and atrazine			
Neither	30	1.0 (reference)	
Glyphosate only	60	0.96(0.6-1.5)	
atrazine only	63	1.4(0.9-2.1)	
Both	171	1.1(0.7-1.6)	
Glyphosate and 2,4-D			
Neither	32	1.0 (reference)	
Glyphosate only	44	1.1(0.7-1.7)	
2,4-D only	61	1.4(0.9-2.1)	
Both	188	1.1(0.7-1.5)	
Glyphosate and Chlordane			
Neither	72	1.0 (reference)	
Olympic and a	147	0.0 (0.7.1.2)	
Gryphosate only	147	0.9 (0.7-1.2)	

chlordane only	13	1.0 (0.5-1.7)	
Both	64	0.8 (0.6-1.1)	
2,4-D and Lindane			
Neither	60	1.0 (reference)	
only 2,4-D	180	1.1(0.8-1.4)	
only lindane	3	0.6(0.2-1.8)	
both	48	1.2(0.8-1.7)	
2,4-D and atrazine			
Neither	41	1.0 (reference)	
only 2,4-D	49	1.0(0.7-1.5)	
only atrazine	35	1.2(0.8-1.9)	
both	199	1.2(0.8-1.7)	
2,4-D and dicamba			
Neither	51	1.0 (reference)	
only 2,4-D	81	0.9(0.6-1.3)	
only dicamba	13	1.2(0.7-2.2)	
both	144	1.2(0.9-1.7)	
2,4-D and cyanazine			
Neither	58	1.0 (reference)	
only 2,4-D	104	0.9(0.6-1.2)	
only cyanazine	11	0.9(0.5-1.7)	
both	130	1.2(0.9-1.6)	
2,4-D and terbufos			
Neither	48	1.0 (reference)	
only 2,4-D	113	1.0(0.7-1.5)	
	81	12/5/201	6

only terbufos	16	1.7(0.97-3.0)
both	115	1.5(1.0-2.0)
Cyanazine and atrazine		
Neither	72	1.0 (reference)
only cyanazine	11	1.3(0.7-2.4)
only atrazine	90	1.0(0.8-1.4)
both	130	1.3(0.97-1.7)

l_____l ¹Age adjusted (<45,45-49,50-54,55-59,60-64,65-69,≥70)

82

I remphase actagoes and true	Number NITT	Number	SEED
Lymphoma category and type (ICD-O-3 codes) ¹	cases, new definition (InterLymph hierarchical classification) ¹	Number cases NHL, older definition (ICD- O-3) ²	Recode
CLL/SLL/PLL/MCL (Mature NHL, B-cell)			
Small lymphocytic lymphoma (9670)	27	27	08
Chronic lymphocytic leukemia/small lymphocytic lymphoma (9823)	74	0	08
Mantle -cell lymphoma (9673)	16	16	10
Diffuse Large B-cell Lymphoma (Mature NHL, B-cell)			
DLBCL (9680)	94	94	13
Follicular Lymphoma (Mature NHL, B-cell)	1		
Follicular lymphoma (9690, 9691,9695,9698)	53	53	21
Other B-cell Types			
Precursor acute lymphoblastic leukemia/lymphoma (9835(B), 9836)	4	0	07
Waldenstrom macroglobulinemia (9761)	2	0	12
Lymphoplasmacytic lymphoma (9671)	2	2	11
Hairy-cell leukemia (9940)	6	0	22
NHL, NOS (9591(B), 9675(B))	6	6	26
Burkitt lymphoma/leukemia (9687)	1	1	17
Extranodal marginal zone lymphoma (MZL), Malt type & Nodal MZL (9699)	13	13	19, 20
Plasma cell neoplasms			
Plasmacytoma (9734, 9731)	6	0	23
Multiple myeloma (9732)	77	0	24
Other NHL Types			1
Precursor acute lymphoblastic leukemia/lymphoma (9835(T), 9837)	1	0	27
Mycosis fungoides (9700)	6	6	28
Peripheral T-cell lymphoma, NOS (9702)	2	2	30
Anaplastic large cell lymphoma, T or null cell (9714)	2	2	33
Enteropathy type T-cell lymphoma (9717)	1	1	35
Primary cutaneous anaplastic large cell lymphoma (9718)	1	1	37
T-cell lymph, nasal-type/aggressive NK leukemia (9719)	1	1	39
NHL, NOS (9591(T))	1	1	42
Lymphoid leukemia, NOS (9820(U))	1	0	
Precursor acute lymphoblastic leukemia/lymphoma (9727(U), 9835(U))	3	1	43
NHL, NOS (9591(U), 9675(U))	6	6	45
Lymphoid neoplasm, NOS (9590(U))	10	10	47
Total	416	243	

Comment [CL76]: This was originally coded as 9713, which is an ICD-O-2 code, which becomes 9719 in ICD-O-3. Since we are presenting ICD-O-3 codes in this table, I have changed this code to 9719.

Lineage: B=B-cell, T=T-cell, U=Unknown ¹ <u>http://seer.cancer.gov/lvmphomarecode</u> based on Morton LM et al. Blood, 2007;110:695-708. ² Percy C. et al., Lyon, France: IARC Press: 2001.

83

12/5/2016

Comment [CL77]: Since IA and NC cancer registries are not yet using 2008 WHO codes, the reference for this table should be the Morton LM et al publication noted here This reference should also be noted in the text Reference to the 2010 blood paper should not be noted in regard to the NHL classification used in this paper.

Chemical/functional class	Pesticide
Acetamide herbicide	Metolachlor, alachlor
Carbamate herbicde	Butlylate, EPTC
Other herbicides	Chloromuron ethyl, 2,4-D, dicamba, glyphosate, herbicide oil, imazethapyr. Paraquat, pendimethalin, 2,4,5-T, 2,4,5TP, trifluralin
Triazine/triazinone herbicides	Atrazine, cyanazine, metribuzin
Carbamate insecticides	Carbofuran, aldicarb, carbaryl
Chlorinated insecticides	Aldrin, chlordane, DDT, dieldrin, heptachlor, lindane, toxaphine
Organophosphate insecticides	Chlorpyrifos, coumaphos, diazinon, dichlorvos, fonofos, malathion, parathion, phorate, terbufos
Other insecticides	Permethrin (crops & animals), trichlorfon
Fungicides	Benomyl, chlorthalonil, captan, maneb/mancozeb, methylaxyl, ziram
Fumigants	Methyl bromide, aluminum phosphate, ethylene dibromide, carbon tetra chloride/carbondisulfide

Supplemental table 7: Pesticide exposures (total days and intensity weight total days) age- adjusted risks of NHL incidence (1993 through 2008)[old nhl definition; n=243].

	NHL Cases	RR ¹ (95%) by Total Days of Exposure	NHL Cases	RR ¹ (95% CI) Intensity-weighted days of exposure
	Insec	ticides, Fungicides and Fumigants		
		P trend=		
Carbaryl (carbamate-insecticide)				
None	56	1.0 (ref)	56	1.0 (ref)
Low	19	0.8 (0.5-1.3)	19	0.9(0.6-1.6)
Medium	20	0.9(0.5-1.5)	20	0.7(0.4-1.2)
High	18	1.1(0.6-1.8)	18	1.2(0.7-2.0)
		P trend=0.64		P trend=0.42
Carbofuran (carbamate-insecticide)				
None	140	1.0 (ref)	140	1.0 (ref)

84

Low	26	1.2(0.8-1.8)	22	1.0(0.7-1.7)
Medium	18	1.1 (0.7-1.7)	21	1.0 (0.6-1.6)
High	21	1.1(0.7-1.7)	21	1.3(0.8-2.0)
		P trend=0.70		P trend=0.37
Chlorpyrifos				
(organophosphate-insecticide)				
None	134	1.0 (ref)	134	1.0 (ref)
Low	33	1.2(0.8-1.8)	30	1.2(0.8-1.8)
Medium	33	1.2(0.8-1.8)	30	0.9 (0.6-1.3)
High	32	0.9(0.6-1.3)	29	1.2 (0.8-1.7)
		P trend=0.50		P trend=0.56
Coumaphos				
None	186	1.0(ref)	186	1.0 (ref)
Low	9	1.3(0.7-2.5)	7	1.6(0.7-3.3)
Medium	7	1.1(0.5-2.3)	8	1.1(0.5-2.2)
High	5	1.4(0.6-3.4)	6	1.2(0.5-2.7)
		P trend=0.45		P trend=0.65
Diazinon				
(organophosphosphorous-insecticide)				
None	80	1.0 (ref)	80	1.0 (ref)
Low	12	1.0(0.6-1.9)	10	1.0(0.5-2.0)
Medium	8	0.9(0.4-1.9)	10	1.1(0.6-2.1)
High	9	1.2(0.6-2.4)	9	1.1(0.5-2.1)
		P trend=0.66		P trend=0.82
DDVP				
None	190	1.0(ref)	190	1.0 (ref)
Low	6	1.0(0.4-2.1)	6	1.1 (0.5-2.5)
	6	0.9(0.4.2.0)	6	0.6(0.3.1.3)

High	5	0.6(0.3-1.6)	5	1.0(0.4-2.4)
		P trend=0.30		P trend=0.99
Fonofos				
None	163	1.0(ref)	163	1.0 (ref)
Low	18	1.1(0.7-1.8)	15	1.3(0.8-2.2)
Medium	13	1.1(0.6-2.0)	15	1.3(0.8-2.2)
Low	13	0.9(0.5-1.5)	14	0.7(0.4-1.2)
		P trend=0.		P trend=0.19
Malathion				
(organophosphorous-insecticide)				
None	39	1.0 (ref)	39	1.0 (ref)
Low	32	1.0(0.6-1.6)	26	1.1(0.7-1.8)
Medium	23	0.8(0.5-1.3)	27	0.7(0.4-1.2)
High	23	1.0 (0.6-1.7)	25	1.0(0.6-1.7)
		P trend=0.70		P trend=0.79
Metalaxyl				
None	91	1.0 (ref)	91	1.0 (ref)
Low	12	1.0 (0.5-1.8)	7	0.8(0.4-1.7)
Medium	3	0.7 (0.2-2.1)	7	1.1(0.5-2.4)
High	5	0.8 (0.3-2.0)	6	0.8(0.3-1.7)
		P trend=0.56		P trend=0.62
Methylbromide				
None	189	1.0 (ref)	189	1.0 (ref)
Low	16	2.7(1.6-4.5)	15	2.6 (1.6-4.5)
Medium	13	1.3(0.7-2.2)	13	1.5(0.8-2.6)
High	13	0.7(0.4-1.2)	13	0.6(0.4-1.1)
		P trend=0.24		P trend=0.07
Permethrin Animals				

12/5/2016

,

*

(pyrethroid-insecticide)				
None	189	1.0 (ref)	189	1.0 (ref)
Low	9	1.1(0.6-2.2)	7	1.3(0.6-2.8)
Medium	5	0.9(0.4-2.1)	7	0.7(0.3-1.6)
High	6	0.7(0.3-1.5)	6	0.7(0.3-1.7)
		P trend= 0.27		P trend=0.04
Phorate				
(organophosphate-insecticide)				
None	72	1.0 (ref)	72	1.0 (ref)
low	15	1.0(0.6-1.8)	12	1.3(0.7-2.5)
medium	15	2.3(1.3-4.1)	12	1.2(0.7-2.3)
high	5	0.5(0.2-1.2)	11	0.9(0.5-1.6)
		P for trend=0.53		P for trend=00.86.
Terbufos				
(organophosphorous-insecticide)				
None	114	1.0 (ref)	114	1.0 (ref)
Low	40	1.4(0.94-1.9)	31-	1.3(0.9-1.9)
Medium	26	1.9(1.2-2.8)	31	1.7(1.2-2.6)
High	26	1.2(0.8-1.9)	30	1.3(0.9-2.0)
		P trend=0.24		P trend=0.16
		Chlorinated insecticides		
Aldrin			-	
None	86	1.0 (ref)	86	1.0 (ref)
Low	9	0.8(0.4-1.6)	9	1.0(0.5-1.9)
Medium	8	0.7(0.4-1.5)	7	0.7(0.3-1.5)
High	6	2.4(1.0-5.4)	7	1.3(0.6-2.9)
		P trend=0.21		P trend=0.86
Chlandana				

None	78	1.0 (ref)	78	1.0 (ref)	
Low	10	1.2(0.7-2.0)	10	1.5(0.8-2.9)	
Medium	8	1.3(0.7-2.4)	9	1.0(0.4-2.3)	-
High	10	1.0(0.9-1.1)	9	1.1(0.6-2.1)	-
		P trend=0.89		P trend=0.77	-
DDT					-
None	71	1.0 (ref)	71	1.0 (ref)	-
Low	14	0.9(0.5-1.7)	13	1.1(0.6-2.2)	-
Medium	12	1.4(0.7-2.6)	12	1.0(0.5-1.8)	-
High	11	1.1(0.6-2.2)	12	1.3(0.7-2.4)	-
		P trend=0.61		P trend=0.47	-
Dieldrin					_
None	101	1.0 (ref)	101	1.0 (ref)	_
	2			1.0(0.(.5.0)	
Low	3	0.9(0.3-2.9)	3	1.9(0.6-5.9)	
Medium	3	2.9(0.9-9.2)	2	1.3(0.3-5.2)	
High	1	1.1(0.1-7.7)	2	0.9(0.2-3.8)	
		P trend=0.47		P trend=0.97	
Heptachlor					
None	88	1.0 (ref)	88	1.0 (ref)	
Low	8	0.9(0.7-2.6)	7	1.2(0.6-2.4)	1
Medium	8	1.4(0.7-2.6)	8	1.7(0.7-3.8)	-
High	5	1.1(0.6-2.2)	6	1.4(0.6-3.3)	
		P trend=0.26		P trend=0.42	-
Lindane					-
None	86	1.0 (ref)	86	1.0 (ref)	-
Low	7	1.0(0.5-2.1)	7	1.1(0.5-2.3)	-
Madium	0	12(0624)		10(0522)	_
weatum	8	1.2(0.0-2.4)	/	1.0(0.3-2.2)	
High	6	3.7(1.6-8.4)	6	2.8(1.2-6.4)	

12/5/2016

÷

		P trend=0.0.01		P trend=0.04
Toxaphene				
None	90	1.0 (ref)	90	1.0 (ref)
Low	8	1.2(0.6-2.5)	6	1.6(0.7-3.5)
Medium	4	4.4(1.6-12.1	7	1.3(0.6-3.0)
High	6	0.9(0.4-2.0)	5	0.9(0.4-2.3)
		P trend=0.66		P trend=0.83
		Herbicides		
Alachlor				
(acetamide-herbicide)				
None	96	1.0 (ref)	96	1.0 (ref)
Low	39	1.1(0.8-1.6)	38	1.1(0.7-1.6)
Medium	45	0.9(0.6-1.2)	40	0.8 (0.6-1.2)
High	31	1.4(0.9-2.0)	36	1.4(0.96-2.1)
		P trend=0.22		P trend=0.09
Atrazine				
(triazine-herbicide)				
None	59	1.0 (ref)	59	1.0 (ref)
Low	64	1.1(0.8-1.6)	58	1.1(0.8-1.6)
Medium	56	1.3(0.9-1.9)	59	1.2(0.9-1.8)
High	55	1.2(0.8-1.7)	57	1.3(0.9-1.8)
	1	P trend=0.52		P trend=0.27
Butylate				
(thiocarbamate-herbicide)				
None	75	1.0 (ref)	75	1.0 (ref)
Low	14	0.9 (0.5-1.6)	12	0.9(0.5-1.6)
Medium	15	3.4(1.9-5.9)	11	2.7(1.4-5.0)
High	5	1.1(0.4-2.7)	11	1.6(0.9-3.0)
		0	12/5/2016	

		P trend=0.005		P trend=0.049
Chlorimuron-ethyl				
(benzoic acid ester-herbicide)				
None	75	1.0 (ref)	75	1.0 (ref)
low	20	1.1(0.7-1.9)	13	1.1(0.6-2.0)
medium	11	1.5(0.8-2.9)	12	1.3(0.7-2.4))
high	6	0.7(0.3-1.7)	12	1.0(0.5-1.9)
		P for trend=0.73		P for trend=0.94
Cyanazine				
(triazine-herbicide)				
None	114	1.0 (ref)	114	1.0 (ref)
Low	41	1.4(0.95-1.9))	33	1.2(0.8-1.7)
Medium	32	1.3(0.9-1.9)	32	1.3(0.9-1.9)
High	25	1.1(0.7-1.6)	32	1.2(0.8-1.8)
		P for trend=0.0.89		P for trend=0.34
Dicamba (benzoic-herbicide)				
None	92	1.0 (ref)	92	1.0 (ref)
Low	39	1.5(1.0-2.2)	38	1.2(0.8-1.8)
Medium	38	1.2(0.8-1.8)	39	1.4(0.9-2.0)
High	38	1.0(0.7-1.5)	37	1.0(0.7-1.5)
		P trend=0.64		P trend=0.95
2,4-D				
(phenoxy-herbicide)				
None	53	1.0 (ref)	53	1.0 (ref)
Low	60	0.9(0.6-1.3)	59	0.9(0.6-1.4)
Medium	59	1.0(0.7-1.5)	60	1.0(0.7-1.4)
High	59	0.9(0.6-1.3)	58	0.9(0.6-1.3)
	90)	12/5/2016	

.

		P trend=0.61		P trend=0.69
EPTC				
(thiocarbamate-herbicide)				
None	164	1.0 (ref)	164	1.0 (ref)
Low	21	1.3(0.9-2.1)	15	1.4(0.8-2.4)
Medium	9	1.1(0.6-2.2)	12	1.1(0.6-2.0)
High	10	0.8(0.4-1.5)	13	0.8(0.5-1.5)
		P trend=0.39		P trend=0.61
Glyphosate				
(phosphinic acid-herbicide)				
None	48	1.0 (ref)	48	1.0 (ref)
Low	72	1.0(0.7-1.4)	61	1.1(0.7-1.6)
Medium	51	0.7(0.5-1.0)	61	0.7(0.5-1.0)
High	60	1.0(0.7-1.4)	60	0.9(0.6-1.4)
		P trend=0.79		P trend=0.0.99
Herbicide Oil				
None	84	1.0 (ref)	84	1.0 (ref)
Low	9	1.0(0.5-1.9)	9	1.2(0.6-2.4)
Medium	10	1.8(0.95-3.6)	10	1.1(0.6-2.1)
High	8	1.1(0.6-2.6)	8	1.5(0.7-3.1)
		P trend=0.62		P trend=0.29
Imazethapyr				
(imidazolinone-herbicide)				
None	132	1.0 (ref)	132	1.0 (ref)
Low	30	0.9(0.6-1.3)	25	1.0(0.6-1.5)
Medium	20	0.8(0.5-1.2)	25	0.8(0.5-1.3)
High	24	0.9(0.6-1.4)	24	0.8(0.5-1.2)
		P trend=0.50		P trend=0.64
	9	I	12/5/2016	

Metolachlor				
None	101	1.0 (ref)	101	1.0(ref)
Low	36	1.2(0.8-1.8)	35	1.1(0.8-1.7)
Medium	36	1.3(0.9-1.9)	36	1.4(0.9-2.0)
High	34	1.1(0.7-1.6)	34	1.1(0.8-1.6)
		P trend=0.73		P trend=0.71
Metribuzin				
(triazine-herbicide)				
None	70	1.0 (ref)	70	1.0 (ref)
Low	15	0.8 (0.5-1.5)	14	0.9(0.5-1.6)
Medium	20	1.2(0.7-2.0)	14	1.1(0.6-2.0)
High	6	1.1 (0.5-2.5)	13	1.2(0.6-2.1)
		P trend=0.0.59		P trend=0.55
Paraquat				
None	88	1.0 (ref)	88	1.0(ref)
Low	8	2.1(1.0-4.3)	8	4.8(2.3-9.9)
Medium	8	0.8(0.4-1.7)	7	0.7(0.3-1.5)
High	6	1.0(0.4-2.3)	7	0.9(0.4-2.0)
		P trend=0.91		P trend=0.73
Pendimethalin				
None	63	1.0 (ref)	63	1.0(ref)
Low	22	1.3(0.8-2.0)	19	1.5(0.9-2.5)
Medium	17	1.3(0.8-2.3)	19	1.0(0.6-1.7)
High	17	1.1(0.6-1.9)	18	1.3(0.8-2.2)
		P trend=0.68		Ptrend=0.43
Permethrin (Crop)				
None	179	1.0 (ref)	179	1.0 (ref)
I and	12	10(0 6 1 0)	0	14(07.27)

12/5/2016

7

÷

Medium	6	2.2(1.0-5.1)	9	1.2(0.6-2.4)
High	8	0.6(0.3-1.2)	8	0.6(0.3-1.2)
		P trend=0.18		P trend=0.15
Trifluralin				
(dinitroaniline-herbicide)				
None	104	1.0 (ref)	104	1.0 (ref)
Low	39	1.0 (0.7-1.5)	37	1.0(0.7-1.4)
Medium	40	1.0(0.7-1.4)	36	1.0(0.7-1.4)
High	29	0.8(0.6-1.3)	34	0.9(0.6-1.3)
		P trend=0.0.36		P trend=0.44
2,4,5 T				
(phenoxyacetic acid)				
None	73	1.0 (ref)	73	1.0 (ref)
low	22		13	2.0(1.1-3.6)
medium	3	1.3(0.4-4.3)	12	1.8(0.99-3.4)
high	12	1.5(0.8-4.3)	12	1.4(0.7-2.5)
		P for trend=0.0.27		P for trend=0.94

.

93

Carbofuran			1			T		
None	1.0(ref)	67	1.0(ref)	58	1.0(ref)	33	1.0(ref)	19
Low	1.4 (0.8-2.5)	15	0.9 (0.4-1.9)	8	0.96(0.4-2.5)	5	1.0(04-2.7)	5
Medium	1.2 (0.6-2.4)	10	0.9 (0.4-1.8)	9	1.6(0.7-3.9)	6	1.4(0.2-10.7)	1
High	1.3 (0.7-2.4)	12	1.1 (0.5-2.9)	5	0.6(0.2-2.0)	3	0.94(0.2-4.1)	2
	P trend=0.36		P trend=0.81	_	P trend=0.79	-	P trend=0.99	-
Chlorpyrifos				1		T		
None	1.0 (ref)	69	1.0 (ref)	55	1.0 (ref)	26	1.0 (ref)	18
Low	0.9(0.5-1.7)	15	1.2(0.6-2.1)	13	1.4(0.7-3.1)	10	0.9(0.3-2.6)	5
Medium	1.1(0.7-2.0)	16	1.0(0.5-1.7)	15	1.2(0.5-2.9)	7	4.2(1.7-10.6)	6
High	1.0(0.5-1.7)	14	0.9(0.6-4.0)	7	1.4(0.6-3.4)	6	0.8(0.3-2.3)	4
	P trend=0.99		P trend=0.66	_	P trend=0.56		P trend=0.97	
Diazinon								
None	1.0 (ref)	40	1.0 (ref)	33	1.0 (ref)	13	1.0 (ref)	12
Low	1.5(0.7-3.1)	9	1.2(0.4-3.1)	5	1.6(0.4-5.5)	3	xxx	2
Medium	1.2(0.4-3.6)	5	0.9(0.3-2.8)	4	1.6(0.4-7.4)	3	xxx-	1
High	1.2(0.5-3.0)	5	1.2(0.4-3.8)	3	2.0(0.4-10.0)	2	XXX	0
	P trend=0.72		P trend=0.84	_	P trend=0.35		P trend=xxx	
Permethrin animals								
None	1.0 (ref)	95	1.0 (ref)	78	1.0 (ref)	38	1.0 (ref)	25
Low	1.3(0.5-3.3)	5	Xxx	1	2.8(1.1-7.0)	5	XXX-	1
Medium	0.9(0.2-3.7)	3	XXX	1	2.9(0.7-12.0)	2	-XXX	2
High	0.8(0.3-2.5)	3	-XXX	0	0.8(0.2-3.5)	2	-XXX	0
	P trend=0.75	_	P trend=xxx		P trend=0.93		P trend=xxx	
Cyanazine								

(triazine)								
None	1.0 (ref)	65	1.0 (ref)	46	1.0 (ref)	24	1.0 (ref)	10
Low	1.2 (0.7-2.2)	15	1.4 (0.8-2.4)	16	1.9(0.9-3.8)	12	3.7(1.4-9.7)	7
Medium	0.9 (0.5-1.6)	16	0.8 (0.4-1.8)	8	1.7(0.8-3.6)	9	2.9 (1.5-7.5)	8
High	1.1(0.6-2.0)	14	1.0 (0.5-2.1)	8	0.8(0.3-2.2)	4	2.6(0.9-7.5)	5
	P trend=0.93		P trend=0.93		P trend=0.87		P trend=0.17	

v

95

20. Dosemeci M,

Alavanja MCR, Mage D, Rothman N, Rowland A, Sandler D, Blair A. A quantitative approach for estimating exposure to pesticides in the Agricultural Health Study. The Annals of occupational Hygiene 2002; 46:245-260.

42. Turner JJ, Morton LM, Linet MS, Clarke CA, Kadin ME, Vajdic CM, Monnereau A, Maynadie M, Chiu B C, H, Marcos-Gragera R, Constantini AS, Cerhan JR, Weisenberger DD. InterLymph hierarchical classification of lymphoid neoplasms for epidemiologic research based on the WHO classification (2008): update and future directions. Blood, 18 November 2010;116(20):e90-e98.